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Abstract 

Antivirus vendors often assert they must be 

protected from scrutiny and criticism, claiming that public 

understanding of their work would assist bad actors (1). 

However, it is the opinion of the author that Kerckhoffs’s 

principle1 applies to all security systems, not just 

cryptosystems. Therefore, if close inspection of a security 

product weakens it, then the product is flawed. 

The veil of obscurity removes all incentive to improve, 

which can result in heavy reliance on antiquated ideas and 

principles. This paper describes the results of a thorough 

examination of Sophos Antivirus internals. We present a 

technical analysis of claims made by the vendor, and 

publish the tools and reference material required to 

reproduce our results.  

Furthermore, we examine the product from the perspective 

of a vulnerability researcher, exploring the rich attack 

surface exposed, and demonstrating weaknesses and 

vulnerabilities. 
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I. INTRODUCTION 

 

Sophos describe their antivirus product using high-level 

doublespeak with little technical substance. Furthermore, 

their product specifications make repetitive claims about 

“detecting threats”, without explanation. The product 

website simply describes how they combine pre-execution 

analysis with runtime behaviour monitoring (2), but fail to 

explain how that is achieved, what is analysed, or what 

behaviour they consider indicative of “threats”. 

Sophos have made it difficult to evaluate or understand 

their product claims by failing to document the techniques 

they used to obtain them. We sought to remedy this by 

                                                                 
1 “It must not be required to be secret, and it must be able to fall into the hands of the 

enemy without inconvenience.” 

developing an understanding of their product internals for 

the purposes of critical evaluation. Using only reverse 

engineering techniques and tools readily available to 

attackers, and with no access to proprietary knowledge, we 

present a detailed analysis of their product. 

We hope this information will be valuable to those 

considering deploying Sophos products. 

Version Information 

The results presented below were obtained using 

Sophos Antivirus 9.5 for Windows, the latest version 

available at the time of writing. Detailed version 

information is available in the Appendix. 

II. COMPONENTS 

 

“A range of technologies, including dynamic code analysis, 

pattern matching, emulation and heuristics automatically 

check for malicious code.” (3) 

This paper examines some of the core components of the 

Sophos Antivirus product. We focus on the core scan 

engine used in all products, and licensed to third parties for 

use in gateway products. 

III. SIGNATURE MATCHING 
 

“Sophos' Dynamic Code Analysis technology utilizes 

sophisticated pattern matching techniques and identifies 

viruses by rapidly analysing specific code sequences 

known to be present within a virus. Virus patterns are 

created to ensure that the engine catches not only the 

original virus but derivatives within the same virus 

family.” (4) 

Static file signatures are the core mechanism Sophos uses 

to identify known malicious code. 

This section presents the result of reverse engineering the 

core signature matching VM, and the Sophos signature file 

format. 

Key Findings 

 File signatures are distributed as bytecode for a 

simple stack-based VM. 
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 Pre-image attacks against signatures are trivial, 

due to heavy dependence on CRC32. 

 Collision resistance is poor, resulting in pool 

pollution attacks, effectively binding their 

efficacy to their secrecy. 

 Signature quality is poor, often trivial or 

irrelevant code sections are incorporated into 

signatures. 

 The signature format is weak compared to 

published solutions that exhibit superior 

characteristics. 

 Signature definitions are authenticated using a 

weak crypto scheme that is trivially defeated, 

making transport security essential. Sophos do 

not use transport security (5)2. 

 As in other Sophos components, use of 

inappropriate or weak cryptographic primitives is 

widespread. 

Signature File Format 

 All Sophos signature files, irrespective of 

content, are distributed in a container format called 

sophtainers. These sophtainers contain subsections called 

‘partitions’3, which can be extracted as appropriate. 

Sophtainers 

Each partition within the sophtainer file begins 

with a 32 bit flag describing the content type, the flags I 

have observed are listed in Figure 1. 

typedef enum { 

    SOPH_SOPHTAINERFLAG         =   'HPOS', 

    SOPH_TABLEOFCONTENTSFLAGS   =    'COT', 

    SOPH_PARTINFOLISTFLAG       =   'SILP', 

    SOPH_SECTIONINFOLISTFLAG    =   'SILS', 

    SOPH_CRYPTXORFLAG           =   'XRRC', 

    SOPH_CRYPTNONEFLAG          =   '\0RC', 

    SOPH_COMPRESSIONNONEFLAG    =   '\0OC', 

    SOPH_COMPRESSIONZLIBFLAG    =   'LZOC', 

    SOPH_SECTIONFLAG            =   'TCES', 

    SOPH_CHECKSUMNONEFLAG       = '\0\0HC', 

    SOPH_CHECKSUMSPMAA32FLAG    = '\1\0HC', 

} sflag_t; 

Figure 1. List of partition flags observed in Sophos definition files. 

The table of contents is mandatory, which describes the 

location of the ‘PLIS’ (Partition List), and the ‘SILS’ 

(Section Info List). Sections may optionally be encrypted 

using the weak XOR cipher; however the 8bit key will be 

included in the file itself, making it of questionable value. 

A sample table of contents from a Sophos VDB file is 

presented in Figure 2, which was generated using the 

sophtainer tool accompanying this paper. 

$ ./sophtainer --print-header < data/vdl01.vdb  

Sophtainer Header 

   Flag:      48504F53 

   Version:   00000001 

                                                                 
2 And in fact, it will be difficult for them to do so due to (at the time of writing) their use 

of the Akamai CDN, making https non-trivial to deploy. Let’s hope they understand SNI. 

3 Actually the code only refers to them as ‘PART’, which I’ve assumed is a truncation of 

partition. 

Table of Contents: 

   Flag       00434f54 

   Length:    00000054 

   Checksum:  0fcd8607 [GOOD] 

Part Info List: 

   Flag:      53494c50 

   Dwords:    00000001 (4 bytes) 

       00# 0005fd2f 

$ ./sophtainer --print-section-list < data/vdl01.vdb  

Section List: 

   Flag:      53494c53 

   Length:    00000001 

 

Dumping Section 0: 

 Start:         0000006c [Verified] 

 Compression:   4c5a4f43 

 Encryption:    00005243 

 Length:        00000000 [Signature Present] 

 Flags: 

  Zlib Compressed 

  Not Encrypted 

 

 Section Signature Present: 

 Algorithm:     01004843 [SPMAA32] 

 Sig Length:    00000004 

 Dumping 4 bytes: 1d 0a a5 e8  

 Comp Flag:   000aa483 

Figure 2. Listing the table of contents and section list from a sophtainer file. 

The header in Figure 2 describes a single zlib compressed 

section, with a SPMAA32 signature. SPMAA is the weak, 

proprietary, 64bit feistel block cipher often used by Sophos, 

a thorough examination and working implementation is 

presented in Section V. Sophos often truncate the 64bit 

SPMAA state to 32bits, as is the case with sophtainer 

section signatures, weakening it further. 

Once extracted, Section data begins with a short header 

describing the contents, and a 64bit flag indicating the 

section type (along with compression and encryption 

status). The section flags I have observed to date are listed 

in Figure 3. 

typedef enum { 

    SOPH_SECTION_NAME           =       'lh', 

    SOPH_SECTION_IDE            =      'edi', 

    SOPH_SECTION_TIMESTMP       = 'pmtsemit', 

    SOPH_SECTION_APPC           =     'cppa', 

    SOPH_SECTION_VDL1           =    '10ldv', 

    SOPH_SECTION_VDL2           =    '20ldv', 

    SOPH_SECTION_VDL3           =    '30ldv', 

    SOPH_SECTION_VDL4           =    '40ldv', 

    SOPH_SECTION_SUS0           =     '0sus', 

    SOPH_SECTION_XVDL           =     'ldvx', 

} stype_t; 
Figure 3. List of section type flags. 

Further technical examination of the sophtainer files, and 

tools to parse, extract and create these files accompany this 

paper. 

Parsing IDE Section Data 

 The Sophos virus signatures are contained within 

the ‘IDE’ sections of sophtainer files. Using the sophtainer 

utility accompanying this paper, we can extract the contents 

to examine them, as demonstrated in Figure 4. 

$ ./sophtainer --dump-section 0  < data/vdl01.vdb  

Dumping Section 

 Flag:                54434553 

 Type:                306c6476 

[VDL Section, unpacking contents.] 

Version:    05 

Type:       000d 

[CHUNK 0, TYPE IDE_CHUNK_TYPE_CLASSDICT, 230 BYTES] 

    0003: 4d e4 4c 01 01 42 01 16 4e   M.L..B..N 

[ … ] 



Figure 4. Extracting an IDE section, and parsing the first IDE chunk. 

The IDE sections are organised into variable width chunks. 

The first byte of each chunk describes the class and type, 

followed by a variable width big-endian length. Certain 

chunk types are container chunks, and contain a sequence 

of sub-chunks immediately after the chunk header. These 

details are described in the documentation accompanying 

this paper, for now we will concentrate on understanding 

the signature definition chunks. 

Deciphering a signature chunk. 

 A sample decoded signature chunk for a pattern 

Sophos calls “Turbo 448” can be observed in Figure 14. 

The primary components of the signature definition are the 

Virus Name, followed by one or more bytecode programs 

that describe how to identify the file. 

Sophos execute the bytecode program for each input, 

deciding if the contents matches or not determines whether 

Sophos considers the file malicious. 

Bytecode programs. 

 I have written a sample disassembler for the 

bytecode format used by Sophos. The VM is a simple stack 

based interpreter, with single byte opcodes followed by a 

variable number of operand bytes. The VM has an RPN-

like stack for computation, and register that holds the 

current file pointer, and six named locations (registers). 

A table containing some sample opcodes is presented in 

Figure 5. 

Opcode  Description 

VDL_OP_CRC32 96 Match crc32 n bytes (ones 

complement) 

VDL_OP_NEXT FA Increment the file pointer. 

VDL_OP_READSW E1 Read word onto stack. 

VDL_OP_LOADIWSW DE Load immediate word onto stack. 

VDL_OP_SEEKSW E8 Pop word, seek to absolute offset. 

VDL_OP_SEEKIB EB Move file pointer forward n bytes. 

VDL_OP_FADJUSTSW CB Adjust next value on stack. 

VDL_OP_SUBSW D6 Pop two words, subtract, push 

result. 

VDL_OP_SEEKIW F8 Seek to immediate offset. 

Figure 5. Sample opcodes for Sophos bytecode VM. 

The majority of signatures that Sophos distribute begin 

with a literaliw opcode, which locates a hardcoded 16 bit 

value, which is then followed by a CRC32 on the 

proceeding data. There are more complex signatures, and 

some less complex, some sample programs are presented 

below. 

0000: fb eb 7b          literaliw       eb 70 

0003: fc 90             literalib       90 

0005: eb 03             seekib          03 

0007: 96 06 2c b0 28 73 crc32           06 2c b0 28 73 

000d: fa                next 

000e: fa                next  

000f: fb 75 02          literaliw       75 02 

0012: eb 09             seekib          09 

0014: 96 27 13 e1 98 0e crc32           27 13 e1 98 0e  

001a: ed                hlt 

This program, a definition called “Attention 629” is a 

slightly more complex example, containing more literal 

bytes and some file pointer manipulation. 

The patterns Sophos distribute vary in complexity, the 

simplest examples are of the following form. 

         0000: fc 50             literalib       50 

       0002: f4 02 ba bb       literalibv      02 ba bb 

       0006: fb 20 01          literaliw       20 01 

       0009: fb 90 90          literaliw       90 90 

       000c: ed                hlt 

The previous example simply matches six literal 

consecutive bytes (the literalibv opcode matches any 

one of the specified bytes). 

Signature Design 

 The core theme of the virus definitions 

distributed by Sophos is to find a section of code that 

Sophos feels is unique, and then CRC32 it. The rationale 

for relying on such weak protection against signature 

collisions is unclear, but due to the heavy misuse of 

cryptography throughout Sophos products, it is likely due 

to a misunderstanding of CRC32 characteristics. 

Collision resistance 

 It is self-evident that one of the core goals of an 

anti-virus signature should be to minimise false positives. 

There is a very large body of work published on this topic 

that Sophos have ignored, resulting in a very weak 

signature scheme. 

In fact, it is not simply easy to find false positives; it is easy 

to generate pre-images for Sophos signatures, making them 

vulnerable to a class of attacks known as ‘pool pollution’. 

These attacks are described in more detail in Section X. 

Generating pre-images 

 It is well understood that CRC32 is not resistant 

to pre-image attacks (6); in fact we can automatically 

generate samples to match most Sophos signatures. A 

demonstration is presented in Figure 15. 

Signature Quality 

 Sophos claim that their researchers try to match 

generic code, so that variations may also match the same 

signature. We tested this claim by disassembling sample 

signatures for malware samples, and finding what code was 

used in the signatures. 

We see little evidence that Sophos researchers are aware of 

the context of the code they are looking at, often irrelevant, 

trivial, or even dead code is used. 



TODO: Add some examples patterns and show code from 

original samples. 

Summary 

 Sophos signatures are distributed in bytecode 

format for a proprietary VM. 

 The signatures heavily rely on CRC32. 

 Signatures tend to be of poor quality, often 

matching irrelevant or dead code sequences. 

 The signatures used by Sophos can be considered 

weak at best. 

Tools to understand, create, and disassemble the bytecode 

used by Sophos are presented in the Appendix. 

Signature Attacks 

 

TODO 

 Pool pollution attacks. 

 Pre-image disruption attack. 

 Defeating the authentication. 

IV. BUFFER OVERFLOW PROTECTION 

 

“This detection system will catch attacks targeting 

security vulnerabilities in both operating system software 

and applications.”. (4) 

Sophos position their buffer overflow protection as one of 

the four major components of their product (4), but 

describe nothing about what it does. 

This section presents an analysis of this Sophos component. 

Key Findings 

 Despite misleading claims to the contrary (5), this 

component will only operate on versions of 

Windows prior to Vista. 

 Two weak forms of runtime exploit mitigation 

are implemented. 

 Sophos use inappropriate and weak cryptographic 

primitives to obscure sensitive implementation 

details from attackers. 

 Superior solutions written by real experts in 

exploit mitigation are available at no cost. 

Design 

 The buffer overflow protection component is 

implemented entirely in userspace, and loaded into the 

address space of applications using Appinit_Dlls4. 

Sophos use the Microsoft Detours (6) runtime 

instrumentation framework to intercept execution of 

various Windows APIs, where they insert runtime integrity 

checks. 

Sophos had intended for these integrity checks to 

implement two different mitigation strategies: 

 Prevent exploitation of stack buffer overflows 

using SEH overwrites. 

 Detect the use of the return-to-libc exploitation 

technique. 

These strategies are evaluated below. 

SEH Overwrite Protection 

 SEH overwrites were traditionally the simplest 

method of exploiting stack buffer overflows on Windows. 

However, adoption of toolchain and runtime mitigations 

developed by Microsoft (SafeSEH, SEHOP) has effectively 

neutered what had previously been a very trivial 

exploitation technique. 

Nevertheless, SafeSEH is only available at build time5, and 

SEHOP is only available on versions of Windows released 

since Vista Service Pack One. Therefore, those applications 

not built with SafeSEH on Windows XP and Windows 

Server 2003 remain exploitable by even low-skilled 

attackers. 

This topic has been explored in detail by Matt Miller, 

generally recognised as one of the most important 

researchers in Windows security, in his paper (7). Matt 

describes how a runtime SEH overwrite protection might 

be implemented. 

Exception Handler Chain Verification 

 In brief, the core insight introduced in (7) was 

that by inserting a canary at the tail of the exception 

handler chain6, the integrity of the list can then be verified 

at exception dispatch by walking through each link and 

checking the list terminus. An attacker cannot easily 

maintain this property; therefore the system can verify the 

chain has not been tampered with before trusting it. 

                                                                 
4 The Appinit_Dlls list is processed during initialisation of USER32; therefore 

applications that do not load USER32 are unaffected. 

5 Furthermore, SafeSEH is generally considered weak, due to well-known attacks if a 

single loaded module does not enable it. This may change as adoption increases. 

6 The chain is effectively a linked list of function pointers. 



A good quality implementation of this mitigation 

(including source code) is available from (8). The 

pseudocode implementation from (7), intended to be called 

during exception dispatch, is quoted in Figure 6. 

CurrentRecord = fs:[0]; 

ChainCorrupt  = TRUE; 

while (CurrentRecord != 0xffffffff) { 

    if (IsInvalidAddress(CurrentRecord->Next)) 

        break; 

    if (CurrentRecord->Next == ValidationFrame) { 

        ChainCorrupt = FALSE; 

        break; 

    } 

    CurrentRecord = CurrentRecord->Next; 

} 

if (ChainCorrupt == TRUE) 

    ReportExploitationAttempt(); 

else 

    CallOriginalKiUserExceptionDispatcher(); 

Figure 6. The pseudocode for Matt Miller’s runtime exception handler chain 

integrity verification, which effectively binds the difficulty of SEH overwrite 

exploitation to the implementation of ASLR on the host. 

Sophos Implementation 

 While clearly inspired by (7), the implementation 

in Sophos demonstrates a fundamental misunderstanding of 

the attacks that Matt was working to prevent. At best it can 

be considered a weak obfuscation that prevents the most 

trivial existing exploits from functioning. 

Simple adjustments to an existing exploit can be made to 

bypass the checks that Sophos perform. 

Pseudocode for the implementation found in Sophos is 

presented in Figure 7, based on reverse engineering the 

hooks found in sophos_detoured.dll. 

CurrentRecord = Tib->ExceptionList; 

 

for (i = 0; i < 2; i++) { 

    if (IsBadReadPtr(CurrentRecord, Size)) { 

        break; 

    } 

    if (CurrentRecord->Handler >= Tib->StackLimit 

   && CurrentRecord->Handler <= Tib->StackBase) { 

        SuspendCurrentThread(); 

    } 

    if (CurrentRecord->Next == -1) { 

        break; 

    } 

 

    CurrentRecord = CurrentRecord->Next; 

} 

 

CallOriginalExceptionDispatch(); 
Figure 7. Reverse engineered pseudocode for Sophos SEH Overwrite 

protection. 

This code simply verifies that the handler for the first two 

exception records do not point within the current thread 

stack. The intention was clearly to prevent pointing the 

exception handler back into the buffer that the attacker 

controls, however this is such a ludicrously weak 

mechanism that bypassing it is trivial. 

Code suitable for reproducing these findings on machines 

using Sophos products accompanies this paper.  

A Simple demonstration bypassing this weak protection is 

also provided. 

Summary 

 The SEH overwrite protection in Sophos is very 

weak. 

 The implementation only verifies that the first 

two exception records do not point within the 

current thread stack. 

 Even low-skilled attackers can trivially bypass 

this mitigation with minimal effort. 

 Sophos misunderstood published information on 

this topic, resulting in a broken implementation 

of what is essentially a solved problem. 

 The obvious attack against Sophos SEH 

protection is return-to-libc, however this is 

discussed in the next section. 

Ret2libc Detection 

 Ret2libc (return-to-libc) is an exploitation 

technique originally developed by Solar Designer to 

demonstrate weaknesses in early stack buffer overflow 

mitigation techniques. While fundamentally the same 

principle, the attack has been generalised over time and is 

now sometimes referred to as ROP, Return Oriented 

Programming.7 

In brief, during classical stack buffer overflow scenarios, an 

attacker modifies the return address to point back into the 

buffer they control. Early exploit mitigations focussed on 

these attacks, meaning the stack might be randomised or 

non-executable, resulting in the attacker being unable to 

return into the same buffer he is using to modify the stack 

frame. Solar Designer defeated this by setting up the 

parameters for a call into a library routine, and then 

returning into a static location – the c library. 

Ret2libc is still an important exploitation technique, and is 

often part of the attacker’s solution to the NX/DEP puzzle. 

A strong ASLR implementation is generally considered the 

best protection against ret2libc; if attackers cannot predict 

where the code sequences they want are located, they 

cannot return into them8. However, it is a reasonable 

observation that ASLR is not strong on all Windows 

platforms or with all applications, and Sophos have 

attempted to implement a solution to this in their Buffer 

Overflow Protection product. We reverse engineer and 

evaluate their ideas in this section. 

                                                                 
7 The author prefers the original ret2libc term, and will use it throughout this paper. 

8 There are well understood generic attacks against ASLR that are not explained here for 

brevity. Briefly, you must leak an address, find something static, or increase your chances 

of getting lucky. 



Protected Functions 

 The Sophos solution appears to be called 

“Protected Functions”9. In summary, Sophos create a list of 

Windows APIs that they believe are most likely to be used 

in a ret2libc exploit, and then intercept them using 

Microsoft Detours. When their detour callback is executed, 

they verify the callsite was from within an expected module 

before calling the original routine. 

This solution is fundamentally broken. It is difficult to 

believe that anyone with even a rudimentary understanding 

of control flow or the organization of computer programs 

could have believed it offered any challenge to attackers 

whatsoever. 

Indeed, it will be a considerably more challenging task to 

enumerate all the flaws with this silly idea. Nevertheless, I 

will persevere, and attempt to point out some of the major 

problems below. 

Ret2libc generality 

 Sophos fail to understand that although Solar 

Designer demonstrated returning directly to exported 

library functions, he did so because it was convenient, not 

because of any technical limitation. Modern ret2libc attacks 

have made finding collections of useful code sequences 

(often referred to as gadgets) a science, and various 

frameworks exist for producing useful payloads out of 

whatever code you have available. 

Therefore, an attacker can simply piece together the 

functionality they want from other places, or even simply 

indirectly call the routines. 

Attempting to enumerate known bad 

 Sophos try to enumerate the exports that they 

think attackers might want to return into in their exploit 

payload. Of course, there are typically thousands of these 

exports mapped into the address space of a typical 

Windows application (even ignoring the ret2libc section 

above), some of which Sophos cannot possibly know in 

advance.  

The result is that you can simply avoid the routines that 

they hook, obtaining the same functionality elsewhere, 

thereby defeating their protection. 

Improper use of cryptographic primitives 

 Interestingly, Sophos appear to have realised that 

an attacker can simply avoid the routines that they 

intercept. Their solution to this problem was to obfuscate 

the list of APIs with a weak proprietary feistel cipher called 

SPMAA. The intention was presumably to make attackers 

                                                                 
9 This is based on debugging messages observed in the product. 

believe that there are hidden “landmines” distributed 

throughout the Windows API, forcing them to work harder. 

Of course, the hardcoded 64bit symmetric key (which 

happens to be 0xd6917912f2e43923) is easily recoverable 

using standard reverse engineering techniques, making 

their obfuscation moot. 

However, for extra security, the decrypted contents are then 

optionally decrypted with the XOR cipher, using the 

hardcoded, 8bit key, 0x93. This guarantees that any 

attacker will simply give up writing their ret2libc payload, 

as they will be unable to concentrate due to uncontrollable 

laughter. 

Using the spmaautil utility from Figure 16, the 

command demonstrated in Figure 8 will extract the 

decrypted BOPS (Buffer Overflow Protection) 

Configuration, allowing you to examine the list of 

“Protected” APIs. 

$ ./spmaautil --output=results       \ 

    --setkey=$((0xd6917912f2e43923)) \ 

    --filename=Config.bops           \ 

    -–decrypt 

Figure 8. Decrypting the Sophos BOPS configuration file. 

Popular programs are whitelisted. 

 The BOPS configuration file used by Sophos also 

includes a list of whitelisted programs that these protections 

are applied to. Examples include quicktimeplayer.exe, 

powerpnt.exe, acrord32.exe, outlook.exe, and so on. 

Assuming Sophos redesigned their ret2libc protection to 

actually work; it cannot be used to protect any other 

software. 

Summary 

 The ret2libc mitigation in Sophos is very weak, 

and primarily relies on secrets. 

 Sophos protect their secrets using a weak, poorly 

designed crypto scheme. 

 Sophos misunderstood the generality of the 

ret2libc exploitation technique. 

 Very few applications are supported. 

Sample programs and reference material enabling you to 

reproduce these results accompany this paper. 

Further information about SPMAA and its use in Sophos 

products is available in Section V. SPMAA. 

Recommendations 

 The BOPS component of Sophos Antivirus is 

essentially useless. At best you could argue it might require 

an attacker to make trivial modifications to his existing 

exploit. 



Studying BOPS has been revealing, demonstrating a 

fundamental failure by Sophos to understand the most basic 

security concepts. 

Genuine runtime exploit mitigations exist for older 

Windows systems. The author recommends you evaluate 

WehnTrust and EMET. 

V. SPMAA 

 

The hallmark of Sophos products is inappropriate or weak 

use of cryptography, and the algorithm Sophos prefers is a 

weak feistel block cipher called SPMAA. SPMAA appears 

to be a proprietary invention of Sophos, which they use for 

authentication and obfuscation of product data. 

Key Findings 

 SPMAA is used throughout Sophos products. 

 The cipher has not been published or peer 

reviewed. 

 Inherently weak characteristics, possibly a very 

dated design. 

 Probably designed by a real cryptographer, but 

has been misused (and used for too long) by 

Sophos. 

Design 

SPMAA is a symmetric cipher, meaning that 

Sophos simply hide the key within the product, and hope 

attackers do not know how to use a disassembler. 

In this section we present a working implementation of the 

SPMAA algorithm, and a command line tool to use it, 

along with the encryption keys recovered from Sophos 

products. 

A full implementation in C is provided in the Appendix. 

Summary 

 Sophos relies on a weak encryption scheme for 

secrecy and authentication throughout the products. While 

the cipher itself is not obviously broken, despite the lack of 

peer review, it is inherently dated and weak by design. 

Sophos misuse cryptographic primitives throughout their 

product. 

V. GENES AND GENOTYPES 

 

“Sophos Behavioral Genotype is a powerful technology 

that is able to detect malicious behaviour even before 

specific signature-based detection has been issued. This 

provides zero-day protection to all customers using 

Sophos’ […] products” (12) 

 What Sophos refers to as Genotypes are simply 

combinations of arbitrary software characteristics. These 

characteristics can be assigned during analysis, or by 

combinations of signatures called filters (or during pre-

execution analysis). 

Key Findings 

 Genes are simply software characteristics that are 

applied as tags during analysis or at runtime. 

 Characteristics can be things like specific API 

imports, instructions used, or embedded strings. 

 Combining these characteristics together can be 

used to make more signature definitions. 

Design 

 An American company called “Strategic Patents” 

(presumably) representing Sophos applied for a patent on 

this concept in the USA, providing some insight into the 

design. 

“Each gene may describe a different behaviour or 

characteristic of potentially malicious applications or 

other file. For example, potentially malicious applications 

may copy itself to a %SYSTEM% directory. Therefore a 

gene may be created to identify this functionality by 

matching the sequence of API calls and the strings that 

are referenced" (13) 

Examples 

 Genes can be understood more easily by referring 

to them as tags. Sophos simply tag executables with new 

labels as they analyse or monitor it. When a combination of 

tags have been collected that match a pattern (or genotype), 

Sophos detect it as malicious. 

Sophos list some examples in their patent application, 

which I’ve reproduced in Figure 9. 

 
Figure 9 Sophos example Genes 

The pre-execution emulation can also apply tags, such as 

unusual instructions, operations, or addresses observed. 

VI. PRE-EXECUTION ANALYSIS 

 



“Advanced emulation technology along with an online 

decompressor for scanning multi-layer attachments is 

utilized to detect polymorphic viruses. The robust engine 

supports multiple scanning modes to optimize 

performance.” 

Sophos promote their pre-execution analysis as a generic 

solution to obfuscated or packed malicious code. In reality, 

the supported operations are very specific and of limited 

value. 

Key Findings 

 Sophos include a very simplistic x86 emulation 

engine that records memory references and 

execution characteristics. 

 The emulation is a poor representation of x86, 

and only executed for around 500 cycles. 

 Detecting the Sophos emulator is trivial, but 

spinning for 500 cycles on entry is sufficient to 

subvert emulation. 

 Minimal OS stubs are present, but demonstrate a 

lack of understanding of basic concepts. 

 Sophos includes automated unpacking of many 

archive and executable packer types, but are far 

too specific to be useful. 

 A Javascript interpreter is used to emulate PDF 

and HTML, exposing considerable attack surface. 

Native Code Emulation 

 Executable code is simulated in a simplistic x86 

emulator for a few hundred cycles during analysis. The 

emulator records memory references and allows self-

modifying code to execute before the static file signatures 

are applied. The emulator also records characteristics that 

are used in gene matching. 

Evidently the key intention of the emulation is to allow 

trivial decryption loops to run before applying static file 

signatures. Many naïve programmers use trivial XOR 

decryption loops or similar simple tricks to obfuscate 

program code or data. Sophos also uses these tricks to 

obfuscate their product data. 

Design 

 The emulator supports a small subset of x86 

features; there is no concept of CPL or x87 support, for 

example. A minimal stub exists to service software 

interrupts for MS-DOS and Windows executables. 

Bizarrely, the interrupt handler has been broken since its 

original implementation, due to Sophos misunderstanding 

of Windows NT internals. 

Pseudocode representing the handler for software interrupt 

2Eh (Windows NT System Call) is displayed in Figure 10. 

case INSTRUCTION_CLASS_INT: 

    if (!Emulator->EmulatorFlags & EMULATOR_32BIT)) { 

        MSDOSInterruptHandler(State, OperandByte); 

        break; 

    }                                                                                                                                                                                                                 

    AddGeneType(Emulator, 0, GENE_TYPE_INTOP, OperandByte); 

    AddGeneType(Emulator, 0, GENE_TYPE_INTVA, 

                Emulator->RegsEIP –  

                DecodedInstruction->SourceBytes); 

    // Test for Windows System Call 

    if (OperandByte == 0x2E) { 

        SysNum = Emulator->RegsEAX; // Syscall Number 

        Params = Emulator->RegsEDX; // Parameter Stack 

        // This doesn't make any sense, these numbers  

        // change for every SP. 

        // 

        // 0xBD could be 

        //     NtOpenPrivateNamespace (Windows Vista) 

        //     NtRaiseException (Windows 2003) 

        //     NtReleaseSemaphore (Windows XP) 

        //     NtSetDefaultUILanguage (Windows 2000) 

        //     NtTestAlert (Windows NT) 

        // 

        // 0xBE could be 

        //     NtOpenObjectAuditAlarm (Windows Vista) 

        //     NtRaiseHardError (Windows 2003) 

        //     NtRemoveIOCompletion (Windows XP) 

        //     NtSetEAFile (Windows 2000) 

        //     NtSetUnloadDriver (Windows NT) 

        if (SysNum != 0xBD && SysNum != 0xBE) 

            goto next; 

        EmulateExceptionDispatch(0xC0000014, Value); 

Figure 10 Pseudocode for software interrupts. 

This code demonstrates a fundamental misunderstanding of 

basic NT concepts, the intent of the author was to emulate 

an exception dispatch on code calling 

NtRaiseException() directly. However, Sophos 

failed to realise that System Call numbers vary across 

windows versions. The original programmer copied the 

system call numbers from the SSDT of a Windows Server 

2003 SP1 kernel, not realising that these did not apply to 

any other windows release (15). This entirely nonsense, 

non-functioning code10 has remained undisturbed for many 

years. 

Numerous similar mistakes and misunderstandings plague 

the Sophos codebase. 

Javascript Emulation 

 Applying the same logic to dynamic HTML and 

PDF input, Sophos have built an ecmascript interpreter into 

their product, based on SEE (Simple Ecmascript Engine) a 

freely available BSD licensed interpreter. The interpreter is 

used to emulate javascript payloads, record characteristics 

and allow simple decryption loops to run. 

SEE is unmaintained and abandoned, and has received little 

attention from security researchers, who focus on more 

widely used implementations such as SpiderMonkey, 

Tamarin and V8. 

As a result, SEE suffers from a number of documented 

problems handling pathological expression, including 

broken locale handling, for example Figure 11 

demonstrates a code pattern that SEE fails to handle. 

(new String()).localeCompare(Math.abs(-1)); 

Figure 11. Known problems in SEE locale handling. 

                                                                 
10 With the exception of executables specifically written for a small number 

of unsupported Windows 2003 Server releases. 



Executable Packers 

 Executable packers are self-extracting 

compressed executables, widely used for software 

distribution. However, packers are a simple way for 

unskilled users to transform one program into an equivalent 

but different program, thus defeating blacklisting schemes 

with very low skill requirements. 

For this reason, Antivirus vendors often tout their 

automated unpacking as a competitive advantage. In 

theory, the more packers that a vendor recognises and 

unpacks, the less opportunity for unskilled users to bypass 

their blacklists (of course even a moderately skilled 

attacker could simply write an equivalent program). 

Interesting coverage of unpacking support in various 

Antivirus programs is available in (15). 

Executable Packers Supported 

 The native packers11 I have observed support for 

in Sophos Antivirus are listed in Figure 12. 

Packer Year Summary 

DIET 1992 Dr. Teddy’s ‘DIET’ program for 

files. 

PKLITE 1996 PKZIP for executable files. 

LZEXE 1989 Fabrice Ballard’s12 executable 

packer. 

UPX 2001 The Ultimate Packer for 

eXecutables. 

PETITE 1999 Ian Luck’s executable packer. 

ASPACK 1999 Alexey Solodovnikov’s Packer. 

FSG 2002 Fast Small Good , particularly 

popular in Poland. 

PECompact 2001 PE Compact 

Figure 12 Packers Supported by Sophos Antivirus 

Unpacker Quality 

 With the exception of PECompact support which 

appears to have been licensed from the vendor, the 

unpacking routines appear to be original code developed by 

Sophos. The decoders generally only handle default options 

and codecs, and cannot tolerate even minor stub 

modifications. 

The majority of the packers supported are old and outdated 

and of questionable utility, many do not support modern 

executables and are largely irrelevant. 

Unpacker Generality 

The routines implemented by Sophos often 

support one very old specific version of the packer. It took 

considerable effort to locate supported builds from 

shareware archives in order to test the functionality, often 

                                                                 
11 Sophos define additional unpackers using VDL, however these are a 

negligible increase in attack surface. 

12 Fabrice Bellard is now famous as the author of QEMU. 

requiring dozens of versions to be tested before an 

executable that could be unpacked was found. 

The difficulty in producing a supported input for the 

purposes of testing demonstrates the effective obsolescence 

of this code13. Even an unskilled, naïve adversary simply 

trying to perform a simple transformation would not have 

any trouble subverting the automated unpacking process. 

Summary 

 Automated unpacking is a considerable attack 

surface. 

 Only old and outdated versions of packers are 

supported. 

 Many of the packers supported are irrelevant on 

modern systems. 

Archives and Containers 

 Sophos supports a large number of largely 

esoteric archive and container formats, used for extracting 

and identifying the relevant contents of archive files. While 

there is a large volume of these extractors, they vary 

considerably in quality. 

Many of the decoders are simply bizarre nonsense. For 

example, the ELF decoder specifically excludes Siemens 

TriCore executables (used in industrial microcontrollers). 

ELF defines dozens of esoteric architectures like the Fujitsu 

FR20 or the Matsushita MN10200, all of which are 

perfectly valid. 

  // This makes no sense. 

  if (ElfMachine != EM_TRICORE){ 

    // Matches ET_NONE, ET_REL, ET_EXEC and ET_DYN 

    if ((ElfType - 1) <= 2) 

        return CLASS_ELF_STORAGE.Name; 

    return NULL; 

  } 

Figure 13. Pseudocode for a bizarre architecture exclusion in the ELF 

decoder. 

The most likely explanation is that a customer complained 

that one of their embedded executables for a 

Siemens/Infineon TriCore device was triggering a CRC32 

collision with one of the static file signatures Sophos 

distribute. Rather than fix the problem properly, Sophos 

simply excluded the entire architecture, no longer 

recognising them as executable. 

Summary 

 Emulation is trivial for attackers to detect, and 

provides little value for such a large attack 

surface. 

                                                                 
13 See Appendix for list of packer builds that were found to function. 



 Unpackers and decompressor are high-volume 

and low quality, providing little value and are 

often outdated or irrelevant. 

 Sophos have poor understanding of NT internals 

and executable file formats, ostensibly one of 

their core focus areas. 

 Sophos perform little testing to verify their 

scanning process works as intended, often 

shipping broken nonsense code. 

 Pre-execution analysis represents a considerable 

attack surface, including a full software machine 

emulator, a javascript interpreter, and hundreds of 

decompression codecs and unpackers. 

VII. ATTACK SURFACE ENUMERATION 

 

There is little intersection between the work of antivirus 

vendors and that of security researchers. Security 

researchers operate on the assumption that users make good 

trust decisions, and then try to find ways of subverting that. 

Antivirus vendors, however, work on the assumption that 

users are either unwilling or unable to make trust decisions. 

Sadly, the antivirus vendors are correct. Many users, 

perhaps the majority, are incapable of making good trust 

decisions. This is not entirely unreasonable; the process can 

be complex, technical and confusing. 

While there is general agreement that the solution to this 

problem is to offload those decisions to someone (or 

something) that is capable, we generally diverge on how to 

approach to this. 

Antivirus Products 

 The promise of antivirus software is that users 

will be less dependent on making trust decisions. 

Evaluating antivirus software requires understanding of 

how close to fulfilling this promise the vendor comes, and 

how much attack surface you must trade to achieve it. 

In the case of Sophos, some of the major components that 

contribute to the attack surface includes: 

 An x86 software emulator executed on untrusted 

input. 

 An unmaintained and poorly studied Ecmascript 

interpreter. 

 Large numbers of archive unpackingand 

decompression routines. 

 Packed executable processing. 

 Weak authentication scheme on configuration 

data. 

VIII. CONCLUSION 

 

Sophos demonstrate considerable naivety in many topics 

key to the efficacy of their product. Their widespread use 

of XOR encryption for secrecy, and their poor 

understanding of rudimentary exploitation concepts like 

return-to-libc reinforce this. 

The promise of antivirus is that users will be less dependent 

on making good trust decisions. While certainly desirable, 

Sophos appear ill equipped to keep this promise with their 

current technology. 

The pseudo-scientific terminology used by Sophos to 

promote their software masks elementary pattern matching 

techniques. While their attempt at implementing runtime 

exploit mitigation should be applauded, their failure to 

understand the subject area resulted in a substandard 

product far exceeded by existing published solutions. 
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X. MISCELLANEOUS FIGURES 

 

[CHUNK 2799, TYPE IDE_CHUNK_TYPE_SIGNATURE (1), CLASS IDE_CHUNK_CLASS_SMALL (4), 37 BYTES] 

    4ceb: 41 23 0a 43 09 54 75 72 62 6f 2d 34 34 38 42 01 A..C.Turbo.448B. 

    4cfb: 01 49 12 45 10 fb e8 00 96 1e 43 66 1b 24 96 20 .I.E......Cf.... 

    4d0b: bc 81 b7 d4 ed                                  ..... 

[CHUNK 2800, TYPE IDE_CHUNK_TYPE_SIGFLAGS (10), CLASS IDE_CHUNK_CLASS_EMPTY (0), 1 BYTES] 

    4ced: 0a                                              . 

[CHUNK 2801, TYPE IDE_CHUNK_TYPE_PSTRINGA (3), CLASS IDE_CHUNK_CLASS_SMALL (4), 11 BYTES] 

    4cee: 43 09 54 75 72 62 6f 2d 34 34 38                C.Turbo.448 

[CHUNK 2802, TYPE IDE_CHUNK_TYPE_SUBCHUNKCOUNT (2), CLASS IDE_CHUNK_CLASS_SMALL (4), 3 BYTES] 

    4cf9: 42 01 01                                        B.. 

[CHUNK 2803, TYPE IDE_CHUNK_TYPE_BYTECODEHEADER (9), CLASS IDE_CHUNK_CLASS_SMALL (4), 20 BYTES] 

    4cfc: 49 12 45 10 fb e8 00 96 1e 43 66 1b 24 96 20 bc I.E......Cf..... 

    4d0c: 81 b7 d4 ed                                     .... 

[CHUNK 2804, TYPE IDE_CHUNK_TYPE_BYTECODE (5), CLASS IDE_CHUNK_CLASS_SMALL (4), 18 BYTES] 

    4cfe: 45 10 fb e8 00 96 1e 43 66 1b 24 96 20 bc 81 b7 E......Cf....... 

    4d0e: d4 ed                                           .. 

        0000: fb e8 00                              literaliw       e8 00           ; match literal 16bit immediate 

        0003: 96 1e 43 66 1b 24                     crc32           1e 43 66 1b 24  ; match crc32 n bytes (ones complement) 

                ; generating 30 byte pre-image for crc 0x43661b24... 

                0000: 97 97 61 d9 38 9c 97 97 ..a.8... 

                0008: 97 97 97 97 97 97 97 97 ........ 

                0010: 97 97 97 97 97 97 97 97 ........ 

                0018: 97 97 97 97 97 97       ...... 

        0009: 96 20 bc 81 b7 d4                     crc32           20 bc 81 b7 d4  ; match crc32 n bytes (ones complement) 

                ; generating 32 byte pre-image for crc 0xbc81b7d4... 

                0000: 4b 24 44 b0 c4 c4 c4 c4 K.D..... 

                0008: c4 c4 c4 c4 c4 c4 c4 c4 ........ 

                0010: c4 c4 c4 c4 c4 c4 c4 c4 ........ 

                0018: c4 c4 c4 c4 c4 c4 c4 c4 ........ 

        000f: ed                                    hlt                             ; end of program 
Figure 14. Sample decoded virus signature. 

 
[CHUNK 401, TYPE IDE_CHUNK_TYPE_SIGNATURE (1), CLASS IDE_CHUNK_CLASS_SMALL (4), 37 BYTES] 

    0ba3: 41 23 0a 43 09 41 49 44 53 2d 38 30 36 34 42 01 A..C.AIDS.8064B. 

    0bb3: 01 49 12 45 10 fb 9a 00 96 1e aa af bf aa 96 20 .I.E............ 

    0bc3: 6c 69 f5 7c ed                                  li... 

[CHUNK 402, TYPE IDE_CHUNK_TYPE_SIGFLAGS (10), CLASS IDE_CHUNK_CLASS_EMPTY (0), 1 BYTES] 

    0ba5: 0a                                              . 

[CHUNK 403, TYPE IDE_CHUNK_TYPE_PASCALSTRING (3), CLASS IDE_CHUNK_CLASS_SMALL (4), 11 BYTES] 

    0ba6: 43 09 41 49 44 53 2d 38 30 36 34                C.AIDS.8064 

[CHUNK 404, TYPE IDE_CHUNK_TYPE_SUBCHUNKCOUNT (2), CLASS IDE_CHUNK_CLASS_SMALL (4), 3 BYTES] 

    0bb1: 42 01 01                                        B.. 

[CHUNK 405, TYPE IDE_CHUNK_TYPE_BYTECODEHEADER (9), CLASS IDE_CHUNK_CLASS_SMALL (4), 20 BYTES] 

    0bb4: 49 12 45 10 fb 9a 00 96 1e aa af bf aa 96 20 6c I.E............l 

    0bc4: 69 f5 7c ed                                     i... 

[CHUNK 406, TYPE IDE_CHUNK_TYPE_BYTECODE (5), CLASS IDE_CHUNK_CLASS_SMALL (4), 18 BYTES] 

    0bb6: 45 10 fb 9a 00 96 1e aa af bf aa 96 20 6c 69 f5 E............li. 

    0bc6: 7c ed                                           .. 

        0000: fb 9a 00                      literaliw       9a 00                      ; match literal 16bit immediate 

        0003: 96 1e aa af bf aa             crc32           1e aa af bf aa             ; match crc32 n bytes (ones complement) 

                ; generating 30 byte pre-image for crc 0xaaafbfaa... 

                0000: 36 36 44 ea f8 ec 36 36 66D...66 

                0008: 36 36 36 36 36 36 36 36 66666666 

                0010: 36 36 36 36 36 36 36 36 66666666 

                0018: 36 36 36 36 36 36       666666 

        0009: 96 20 6c 69 f5 7c             crc32           20 6c 69 f5 7c             ; match crc32 n bytes (ones complement) 

                ; generating 32 byte pre-image for crc 0x6c69f57c... 

                0000: bc 32 28 c1 4e 4e 4e 4e .2..NNNN 

                0008: 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNN 

                0010: 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNN 

                0018: 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNN 

        000f: ed                            hlt                                        ; end of program 

 

$ printf "\x9a\x0066D\xea\xf8\xec666666666666666666666666\xbc\x32\x28\xc1NNNNNNNNNNNNNNNNNNNNNNNNNNNN" > VIRUSLOL.EXE 

$ sav32cli.exe VIRUSLOL.EXE 

Sophos Anti-Virus 

Version 1.01.1 [Win32/Intel] 

Virus data version 4.61G, January 2011 

Includes detection for 2225186 viruses, trojans and worms 

Copyright (c) 1989-2011 Sophos Plc. All rights reserved. 

 

System time 13:51:58, System date 17 April 2011 

 

Quick Scanning 

 

>>> Virus 'AIDS-8064' found in file VIRUSLOL.EXE 

 

1 file swept in 5 seconds. 

1 virus was discovered. 

1 file out of 1 was infected. 

Please send infected samples to Sophos for analysis. 

For advice consult www.sophos.com, email support@sophos.com 

or telephone +44 1235 559933 

Ending Sophos Anti-Virus.  
Figure 15. Producing random pre-images for Sophos signatures. 



XI. APPENDIX 
#include <glib.h> 

#include <string.h> 

#include <stdbool.h> 

 

#include "spmaa.h" 

 

// This is an implementation of the proprietary SPA crypto algorithm used 

// in Sophos products. 

 

const static guint spmaa_index_vector[] = { 

    5, 1, 6, 4, 7, 2, 1, 3, 

    6, 3, 0, 7, 0, 4, 2, 5, 

    4, 6, 7, 1, 2, 7, 5, 0, 

    3, 5, 4, 2, 1, 0, 3, 6, 

}; 

 

const static guint8 spa_lookup_a[] = { 

    0xB2, 0xC8, 0x3E, 0xA8, 0x14, 0xD4, 0x54, 0x40, 

    0x79, 0xEE, 0x24, 0xD3, 0x6F, 0x37, 0xC4, 0xE7, 

    0x4F, 0x42, 0x82, 0xE9, 0xC5, 0x1D, 0x50, 0xB4, 

    0x25, 0x97, 0x5D, 0x0E, 0xB5, 0xA5, 0x8F, 0x5E, 

    0x95, 0x34, 0xAE, 0xBD, 0xFD, 0x5C, 0xAD, 0x5F, 

    0x0C, 0xEA, 0x7A, 0xA7, 0x48, 0xEC, 0x6B, 0x08, 

    0x45, 0x26, 0xCF, 0x1E, 0x9B, 0x7C, 0x8A, 0x18, 

    0x98, 0x71, 0x65, 0x5B, 0xA2, 0x83, 0x3C, 0x91, 

    0x88, 0x73, 0xC2, 0x7D, 0xC6, 0xCA, 0x78, 0xFA, 

    0x6A, 0xF3, 0x9F, 0xF1, 0xD2, 0x19, 0x6E, 0x28, 

    0x9C, 0x86, 0x30, 0x1A, 0x41, 0xCD, 0x35, 0xE2, 

    0xCE, 0x7F, 0x68, 0x02, 0x29, 0x1F, 0x7B, 0xDB, 

    0x57, 0x75, 0xF0, 0x6D, 0x12, 0x4B, 0x4E, 0xD6, 

    0x09, 0x8B, 0x66, 0x31, 0x5A, 0xD7, 0x32, 0xF9, 

    0xC9, 0x77, 0xBF, 0xB8, 0x11, 0x8D, 0xD1, 0x16, 

    0x4C, 0xCB, 0xA1, 0x69, 0x3D, 0xAA, 0x0D, 0xD8, 

    0x39, 0x6C, 0x94, 0xF6, 0xE4, 0x80, 0x61, 0xCC, 

    0x93, 0xC7, 0x84, 0xEB, 0xE3, 0x99, 0xAF, 0x47, 

    0x1C, 0x63, 0x4D, 0xBE, 0x74, 0xB7, 0x8C, 0x96, 

    0xD0, 0x06, 0x56, 0xE8, 0x1B, 0x55, 0x3F, 0xFB, 

    0x2F, 0x64, 0xFC, 0x52, 0x17, 0x36, 0x49, 0xED, 

    0x67, 0x62, 0xE6, 0x43, 0x33, 0xA3, 0xDD, 0xBB, 

    0x03, 0xDC, 0xD9, 0xB6, 0xF4, 0xDF, 0xAC, 0xC1, 

    0x0A, 0x23, 0x87, 0x13, 0xFF, 0xEF, 0x22, 0x2E, 

    0x85, 0xD5, 0xDE, 0xF8, 0xE1, 0x0F, 0x01, 0xAB, 

    0x53, 0xF7, 0xE0, 0xB9, 0xC3, 0xDA, 0x9D, 0x9A, 

    0x38, 0x58, 0xA9, 0xF2, 0x10, 0xB3, 0x90, 0x76, 

    0x70, 0xBC, 0x2C, 0x60, 0x00, 0x92, 0xB1, 0x2A, 

    0xE5, 0x21, 0xA4, 0xFE, 0x2B, 0x7E, 0xA6, 0x3A, 

    0x0B, 0x72, 0xBA, 0x51, 0x44, 0xB0, 0xA0, 0x59, 

    0x27, 0x05, 0x89, 0x07, 0x9E, 0x20, 0x81, 0x3B, 

    0x8E, 0x46, 0xF5, 0x4A, 0x2D, 0x15, 0x04, 0xC0, 

}; 

 

const static guint spa_lookup_b[] = { 

    0x31, 0x7A, 0x09, 0xC1, 0x12, 0xEC, 0xA8, 0x6B, 

    0x0D, 0xCD, 0x43, 0x6E, 0x23, 0xDF, 0xF9, 0xF5, 

    0xF6, 0x0E, 0xF4, 0x60, 0x82, 0x77, 0xC5, 0x59, 

    0xF0, 0x3C, 0xB2, 0xBC, 0x26, 0x4F, 0x11, 0xEB, 

    0xFF, 0x9C, 0x80, 0x47, 0xC8, 0xAB, 0x90, 0xAC, 

    0xD0, 0x45, 0x3F, 0x1B, 0x57, 0x50, 0x56, 0x6F, 

    0x69, 0xE0, 0x30, 0xC3, 0x99, 0x44, 0xA5, 0x1D, 

    0x5C, 0x81, 0xFE, 0x17, 0x28, 0x0A, 0x8E, 0x62, 

    0x18, 0x35, 0x2C, 0x7E, 0x25, 0xD7, 0xE1, 0xA1, 

    0xD4, 0x3B, 0x1A, 0x5F, 0x75, 0x5E, 0x74, 0xC4, 

    0xE8, 0x9A, 0xAF, 0x5B, 0x10, 0x97, 0x40, 0x7B, 

    0xBE, 0xFD, 0x08, 0x01, 0x96, 0xB7, 0x65, 0x37, 

    0x88, 0xED, 0x7D, 0xD9, 0x58, 0x94, 0x4E, 0xEF, 

    0xCC, 0x48, 0x3E, 0x15, 0x61, 0x38, 0x20, 0xA9, 

    0xA7, 0x68, 0xB9, 0x8F, 0x24, 0xA2, 0xB5, 0x27, 

    0x78, 0xDC, 0x13, 0xEE, 0x36, 0x4D, 0x5D, 0x2A, 

    0x32, 0x8A, 0x6C, 0xCE, 0xE4, 0xF2, 0xBA, 0x41, 

    0x49, 0xD1, 0xB8, 0x0B, 0xB6, 0x21, 0xF8, 0x04, 

    0x9B, 0xB0, 0x05, 0x34, 0xF1, 0xC6, 0x55, 0x89, 

    0xC0, 0x70, 0xD8, 0x8C, 0xBF, 0x9E, 0x0C, 0x64, 

    0xC7, 0xE6, 0xE9, 0x1C, 0x02, 0xBD, 0x51, 0xB3, 

    0x92, 0xCA, 0x3D, 0x00, 0xA4, 0x5A, 0xE7, 0xCF, 

    0x8D, 0x7C, 0x4C, 0x9F, 0x83, 0x3A, 0xE2, 0xC2, 

    0xE5, 0x73, 0xDD, 0xAD, 0x95, 0x76, 0x19, 0x9D, 

    0x7F, 0x66, 0x71, 0xAA, 0xA6, 0x07, 0x2B, 0x2D, 

    0x63, 0x84, 0xD3, 0xCB, 0xAE, 0x42, 0x14, 0x06, 

    0x72, 0x2F, 0x6D, 0x22, 0xEA, 0xD6, 0x54, 0x1F, 

    0x79, 0xFA, 0x16, 0xFB, 0x98, 0xB1, 0x0F, 0xFC, 

    0xB4, 0xA3, 0x8B, 0xF3, 0xD5, 0xC9, 0xBB, 0x03, 

    0x1E, 0xDE, 0xD2, 0x4A, 0x46, 0x91, 0x52, 0x67, 

    0x85, 0x29, 0x87, 0x33, 0x93, 0x53, 0x86, 0x39, 

    0xE3, 0x6A, 0x4B, 0xDB, 0xF7, 0xA0, 0x2E, 0xDA, 

}; 

 

const static guint spa_lookup_c[] = { 

    0x38, 0x4B, 0xA6, 0x87, 0x19, 0x73, 0x68, 0x51, 

    0x3E, 0xC7, 0xAD, 0x1B, 0xC2, 0x25, 0x45, 0x94, 

    0xE2, 0x6A, 0xF5, 0xBE, 0x09, 0x83, 0x97, 0x84, 

    0x95, 0x91, 0x3D, 0xAA, 0x79, 0xF4, 0x8F, 0x9A, 

    0xA1, 0x7D, 0x52, 0x18, 0xC9, 0x60, 0xB8, 0xEF, 

    0xA4, 0x40, 0x62, 0xB4, 0xF2, 0xE4, 0xF9, 0xD0, 

    0x00, 0x49, 0xC0, 0xA7, 0xFF, 0x85, 0xEE, 0xE9, 

    0x88, 0xFD, 0x32, 0x71, 0x21, 0x31, 0x78, 0x33, 

    0xAB, 0xE3, 0xB5, 0x56, 0x5B, 0xF6, 0x36, 0x9C, 

    0x2B, 0xDC, 0x63, 0xE5, 0x93, 0x5F, 0x70, 0xD7, 

    0xC6, 0xEC, 0x7C, 0x59, 0xF1, 0xB0, 0x4E, 0x2E, 

    0x0B, 0x6E, 0x3B, 0xEB, 0x1E, 0xB1, 0x86, 0xA3, 

    0x82, 0xD9, 0x7B, 0x3A, 0x80, 0xDA, 0xD3, 0x37, 

    0x64, 0x6B, 0xC4, 0x6F, 0x2D, 0x10, 0x98, 0x92, 

    0x29, 0x4C, 0xB3, 0xDB, 0xE7, 0x46, 0x6C, 0x7E, 

    0xBB, 0xF7, 0xA2, 0x8B, 0xD2, 0x13, 0x1A, 0x58, 

    0x89, 0x6D, 0x26, 0xF8, 0xC1, 0xE6, 0x55, 0x7F, 

    0xC3, 0x17, 0x5C, 0x2C, 0x5A, 0xAE, 0x0C, 0xFA, 

    0xE8, 0x22, 0x0A, 0x77, 0x99, 0x8C, 0xA0, 0x90, 

    0x2A, 0x08, 0xBC, 0xED, 0x9E, 0x65, 0xDF, 0x53, 

    0x4D, 0x5D, 0x16, 0x04, 0x7A, 0xBF, 0x48, 0x12, 

    0x61, 0x43, 0xDD, 0xD4, 0xD1, 0x1C, 0x9D, 0x9F, 

    0xC5, 0xB9, 0x75, 0xD8, 0x05, 0x72, 0xAC, 0xAF, 

    0xF0, 0x27, 0x28, 0xA8, 0x1F, 0x57, 0x01, 0xD6, 



    0xFB, 0x42, 0xDE, 0xCD, 0x41, 0x0E, 0x4A, 0xD5, 

    0xF3, 0xBA, 0xB2, 0xCA, 0xB7, 0x8D, 0xFC, 0x50, 

    0x5E, 0x03, 0xCC, 0x54, 0x02, 0xA9, 0x34, 0x81, 

    0x67, 0x66, 0xCE, 0xEA, 0x69, 0x20, 0x30, 0xCF, 

    0x2F, 0x23, 0x76, 0x8E, 0xE0, 0x06, 0x15, 0x47, 

    0x74, 0x1D, 0x35, 0x24, 0xA5, 0x3F, 0xFE, 0x39, 

    0xC8, 0xE1, 0x44, 0x3C, 0xB6, 0x0D, 0xCB, 0x4F, 

    0x11, 0x07, 0x14, 0x8A, 0x96, 0xBD, 0x0F, 0x9B, 

}; 

 

const static guint spa_lookup_d[] = { 

    0x90, 0x1A, 0xA3, 0x4F, 0x40, 0xA8, 0x1C, 0x9F, 

    0xC8, 0xB1, 0x9E, 0xE3, 0x60, 0x85, 0x19, 0xE2, 

    0xFD, 0xD7, 0x0A, 0xC9, 0xD3, 0x86, 0x00, 0x78, 

    0x06, 0x12, 0x8F, 0xBA, 0x2E, 0x53, 0x1D, 0x07, 

    0x2D, 0x16, 0xF5, 0xF2, 0xD1, 0xE0, 0xF8, 0x4C, 

    0x26, 0x57, 0xB9, 0xD8, 0xC3, 0x3D, 0x7A, 0xB5, 

    0xDB, 0x24, 0x0F, 0x63, 0x2C, 0xC0, 0x82, 0x51, 

    0x37, 0x99, 0xA9, 0x65, 0x47, 0xAB, 0xDA, 0x39, 

    0xE5, 0xA5, 0x58, 0x98, 0x4B, 0x9B, 0xBD, 0xAC, 

    0xEB, 0x5F, 0x3B, 0x03, 0x9A, 0xE6, 0x28, 0x43, 

    0xD9, 0xCC, 0xFA, 0xA0, 0x30, 0xB2, 0xB6, 0xA4, 

    0x84, 0x80, 0x72, 0xD6, 0xAE, 0x3A, 0xA7, 0x33, 

    0x0C, 0x05, 0xEF, 0xE9, 0x89, 0xA1, 0x79, 0x18, 

    0x62, 0x96, 0x6F, 0x50, 0xCE, 0x92, 0x7C, 0x2B, 

    0x5D, 0x8A, 0xF1, 0xFC, 0x97, 0xF7, 0x02, 0xAF, 

    0xFE, 0x54, 0x46, 0x93, 0x3F, 0xB0, 0x81, 0x68, 

    0x5B, 0x11, 0xC7, 0x1B, 0xBC, 0x8C, 0xC4, 0x5C, 

    0x8B, 0x34, 0xB7, 0x2A, 0x91, 0x7F, 0x41, 0x9D, 

    0xCF, 0x31, 0x7D, 0x67, 0xE1, 0x76, 0xE4, 0x22, 

    0xC2, 0x61, 0x6C, 0xA2, 0x95, 0xEA, 0x1F, 0x14, 

    0x3E, 0x32, 0x7E, 0xDE, 0x56, 0xB4, 0x52, 0x0E, 

    0x1E, 0x59, 0x29, 0x6A, 0x73, 0x9C, 0xDC, 0x69, 

    0xBF, 0x7B, 0x0D, 0x8E, 0x13, 0xFF, 0xDF, 0xC6, 

    0x23, 0x6B, 0xED, 0xD4, 0xF0, 0xF6, 0x64, 0x20, 

    0x38, 0xFB, 0x44, 0x09, 0x66, 0xCB, 0xDD, 0x74, 

    0x71, 0x5A, 0x10, 0xB8, 0x4A, 0x83, 0x75, 0xAD, 

    0x45, 0x77, 0x01, 0x4E, 0xB3, 0x8D, 0x6D, 0x21, 

    0x70, 0xF4, 0xBE, 0xC5, 0x88, 0xF9, 0x49, 0xE7, 

    0x27, 0xEE, 0x48, 0x04, 0x15, 0xD0, 0xD5, 0xEC, 

    0x0B, 0xCD, 0x55, 0xCA, 0x87, 0x5E, 0xA6, 0x08, 

    0x2F, 0x35, 0x4D, 0x36, 0xE8, 0xBB, 0xAA, 0x17, 

    0x42, 0xC1, 0x6E, 0x3C, 0x25, 0xF3, 0xD2, 0x94, 

}; 

 

void spmaa_init(spmaa_t * state, gconstpointer key) 

{ 

    memset(state, 0, sizeof(spmaa_t)); 

 

    // g_debug("initializing spmaa state @%p with key %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx", 

    //        state, 

    //        ((guint8 *)(key))[0], 

    //        ((guint8 *)(key))[1], 

    //        ((guint8 *)(key))[2], 

    //        ((guint8 *)(key))[3], 

    //        ((guint8 *)(key))[4], 

    //        ((guint8 *)(key))[5], 

    //        ((guint8 *)(key))[6], 

    //        ((guint8 *)(key))[7]); 

 

    // Setup key. 

    spa_setk(&state->internal, key); 

 

    return; 

} 

 

void spa_setk(struct spa * state, const guchar * key) 

{ 

    for (guint i = 0; i < 8; i++) { 

        state->key[i +  0] = key[spmaa_index_vector[4 * i + 0]]; 

        state->key[i +  8] = key[spmaa_index_vector[4 * i + 1]]; 

        state->key[i + 16] = key[spmaa_index_vector[4 * i + 2]]; 

        state->key[i + 24] = key[spmaa_index_vector[4 * i + 3]]; 

    } 

 

    return; 

} 

 

void spmaa_buffer(spmaa_t *state, gconstpointer data, gushort length) 

{ 

    const guint8 * buffer = data; 

 

    for (guint i = 0; i < length; i++) { 

        // Prepare next byte. 

        state->internal.cryptbuffer[state->bytesavail] ^= buffer[i]; 

 

        if (state->bytesavail++ == 7) { 

            // Reset Counter. 

            state->bytesavail = 0; 

 

            // Encrypt. 

            spa_crypt(&state->internal, 0); 

        } 

    } 

 

    return; 

} 

 

guint32 spmaa_finalise32(spmaa_t * state) 

{ 

    if (state->bytesavail) { 

        spa_crypt(&state->internal, 0); 

    } 

 

    return state->internal.cryptbuffer[4] << 0 

         | state->internal.cryptbuffer[5] << 8 

         | state->internal.cryptbuffer[6] << 16 

         | state->internal.cryptbuffer[7] << 24; 

} 

 

void spa_crypt(struct spa * state, gboolean mode) 

{ 

    guint8  T[8]; 

    guint32 A, B, C, D, E, F, G, H, I, J, K; 



    guint32 i, j; 

 

    // Reset state. 

    A = B = C = D = E = F = G = H = I = J = K = 0; 

 

    // Initialize. 

    T[3]    = state->cryptbuffer[0]; 

    T[2]    = state->cryptbuffer[1]; 

    T[1]    = state->cryptbuffer[2]; 

    T[0]    = state->cryptbuffer[3]; 

    T[4]    = state->cryptbuffer[4]; 

    T[5]    = state->cryptbuffer[5]; 

    T[6]    = state->cryptbuffer[6]; 

    T[7]    = state->cryptbuffer[7]; 

 

    for (i = 0; i < 8; i++) { 

 

        // Next byte. 

        A = B = C = E = 0; 

 

        j = mode ? (7 - i) : i; 

        A = (spa_lookup_a[state->key[j +  8] ^ T[5]] & 0xF0) | (spa_lookup_c[state->key[j +  0] ^ T[4]] & 0x0F); 

        B = (spa_lookup_b[state->key[j + 16] ^ T[6]] & 0xF0) | (spa_lookup_a[state->key[j +  8] ^ T[5]] & 0x0F); 

        C = (spa_lookup_d[state->key[j + 24] ^ T[7]] & 0xF0) | (spa_lookup_b[state->key[j + 16] ^ T[6]] & 0x0F); 

        E = (spa_lookup_c[state->key[j +  0] ^ T[4]] & 0xF0) | (spa_lookup_d[state->key[j + 24] ^ T[7]] & 0x0F); 

        D = (spa_lookup_d[state->key[j + 24] ^ T[7]] & 0x0F); 

 

        F       = T[4]; 

        G       = T[5]; 

        H       = T[6]; 

        I       = T[7]; 

        D       = T[3]; 

        J       = C ^ D; 

        T[4]    = J; 

        J       = T[2]; 

        K       = E ^ J; 

        T[5]    = K; 

        T[6]    = T[1] ^ A; 

        K       = B; 

        D       = T[0] << 0 | T[1] << 8 | T[2] << 16 | T[3] << 24; 

        D       = D ^ K; 

        T[7]    = D; 

        T[3]    = F; 

        T[2]    = G; 

        T[1]    = H; 

        T[0]    = I; 

    } 

 

    state->cryptbuffer[0]   = T[4]; 

    state->cryptbuffer[1]   = T[5]; 

    state->cryptbuffer[2]   = T[6]; 

    state->cryptbuffer[3]   = D; 

    state->cryptbuffer[4]   = F; 

    state->cryptbuffer[5]   = G; 

    state->cryptbuffer[6]   = H; 

    state->cryptbuffer[7]   = I; 

} 

 

void spa_cbcdec(spmaa_t *state, gpointer block) 

{ 

    guint8 *ciphertext = block; 

    guint   i; 

 

    if (ciphertext) { 

        for (i = 0; i < 8; i++) { 

            state->internal.cryptbuffer[i] = ciphertext[i]; 

        } 

 

        spa_crypt(&state->internal, 1); 

 

        for (i = 0; i < 8; i++) { 

            state->internal.cryptbuffer[i] ^= state->internal.prevblock[i]; 

            state->internal.prevblock[i]    = ciphertext[i]; 

            ciphertext[i]                   = state->internal.cryptbuffer[i]; 

        } 

 

        return; 

    } 

 

    // Reset CBC State. 

    memset(state->internal.prevblock, 0, sizeof(state->internal.prevblock)); 

 

    return; 

} 

 

Figure 16. SPMAA implementation in C 
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