
Sophail: A Critical Analysis of Sophos Antivirus

Tavis Ormandy

taviso@cmpxchg8b.com

Abstract

Antivirus vendors often assert they must be

protected from scrutiny and criticism, claiming that public

understanding of their work would assist bad actors (1).

However, it is the opinion of the author that Kerckhoffs’s

principle1 applies to all security systems, not just

cryptosystems. Therefore, if close inspection of a security

product weakens it, then the product is flawed.

The veil of obscurity removes all incentive to improve,

which can result in heavy reliance on antiquated ideas and

principles. This paper describes the results of a thorough

examination of Sophos Antivirus internals. We present a

technical analysis of claims made by the vendor, and

publish the tools and reference material required to

reproduce our results.

Furthermore, we examine the product from the perspective

of a vulnerability researcher, exploring the rich attack

surface exposed, and demonstrating weaknesses and

vulnerabilities.

Disclaimer

The views expressed in this paper are mine alone

and not those of my employer.

Keywords

antivirus, reverse engineering, blacklisting,

enumerating badness, malware, pseudoscience.

I. INTRODUCTION

Sophos describe their antivirus product using high-level

doublespeak with little technical substance. Furthermore,

their product specifications make repetitive claims about

“detecting threats”, without explanation. The product

website simply describes how they combine pre-execution

analysis with runtime behaviour monitoring (2), but fail to

explain how that is achieved, what is analysed, or what

behaviour they consider indicative of “threats”.

Sophos have made it difficult to evaluate or understand

their product claims by failing to document the techniques

they used to obtain them. We sought to remedy this by

1 “It must not be required to be secret, and it must be able to fall into the hands of the

enemy without inconvenience.”

developing an understanding of their product internals for

the purposes of critical evaluation. Using only reverse

engineering techniques and tools readily available to

attackers, and with no access to proprietary knowledge, we

present a detailed analysis of their product.

We hope this information will be valuable to those

considering deploying Sophos products.

Version Information

The results presented below were obtained using

Sophos Antivirus 9.5 for Windows, the latest version

available at the time of writing. Detailed version

information is available in the Appendix.

II. COMPONENTS

“A range of technologies, including dynamic code analysis,

pattern matching, emulation and heuristics automatically

check for malicious code.” (3)

This paper examines some of the core components of the

Sophos Antivirus product. We focus on the core scan

engine used in all products, and licensed to third parties for

use in gateway products.

III. SIGNATURE MATCHING

“Sophos' Dynamic Code Analysis technology utilizes

sophisticated pattern matching techniques and identifies

viruses by rapidly analysing specific code sequences

known to be present within a virus. Virus patterns are

created to ensure that the engine catches not only the

original virus but derivatives within the same virus

family.” (4)

Static file signatures are the core mechanism Sophos uses

to identify known malicious code.

This section presents the result of reverse engineering the

core signature matching VM, and the Sophos signature file

format.

Key Findings

 File signatures are distributed as bytecode for a

simple stack-based VM.

mailto:taviso@cmpxchg8b.com

 Pre-image attacks against signatures are trivial,

due to heavy dependence on CRC32.

 Collision resistance is poor, resulting in pool

pollution attacks, effectively binding their

efficacy to their secrecy.

 Signature quality is poor, often trivial or

irrelevant code sections are incorporated into

signatures.

 The signature format is weak compared to

published solutions that exhibit superior

characteristics.

 Signature definitions are authenticated using a

weak crypto scheme that is trivially defeated,

making transport security essential. Sophos do

not use transport security (5)2.

 As in other Sophos components, use of

inappropriate or weak cryptographic primitives is

widespread.

Signature File Format

 All Sophos signature files, irrespective of

content, are distributed in a container format called

sophtainers. These sophtainers contain subsections called

‘partitions’3, which can be extracted as appropriate.

Sophtainers

Each partition within the sophtainer file begins

with a 32 bit flag describing the content type, the flags I

have observed are listed in Figure 1.

typedef enum {

 SOPH_SOPHTAINERFLAG = 'HPOS',

 SOPH_TABLEOFCONTENTSFLAGS = 'COT',

 SOPH_PARTINFOLISTFLAG = 'SILP',

 SOPH_SECTIONINFOLISTFLAG = 'SILS',

 SOPH_CRYPTXORFLAG = 'XRRC',

 SOPH_CRYPTNONEFLAG = '\0RC',

 SOPH_COMPRESSIONNONEFLAG = '\0OC',

 SOPH_COMPRESSIONZLIBFLAG = 'LZOC',

 SOPH_SECTIONFLAG = 'TCES',

 SOPH_CHECKSUMNONEFLAG = '\0\0HC',

 SOPH_CHECKSUMSPMAA32FLAG = '\1\0HC',

} sflag_t;

Figure 1. List of partition flags observed in Sophos definition files.

The table of contents is mandatory, which describes the

location of the ‘PLIS’ (Partition List), and the ‘SILS’

(Section Info List). Sections may optionally be encrypted

using the weak XOR cipher; however the 8bit key will be

included in the file itself, making it of questionable value.

A sample table of contents from a Sophos VDB file is

presented in Figure 2, which was generated using the

sophtainer tool accompanying this paper.

$./sophtainer --print-header < data/vdl01.vdb

Sophtainer Header

 Flag: 48504F53

 Version: 00000001

2 And in fact, it will be difficult for them to do so due to (at the time of writing) their use

of the Akamai CDN, making https non-trivial to deploy. Let’s hope they understand SNI.

3 Actually the code only refers to them as ‘PART’, which I’ve assumed is a truncation of

partition.

Table of Contents:

 Flag 00434f54

 Length: 00000054

 Checksum: 0fcd8607 [GOOD]

Part Info List:

 Flag: 53494c50

 Dwords: 00000001 (4 bytes)

 00# 0005fd2f

$./sophtainer --print-section-list < data/vdl01.vdb

Section List:

 Flag: 53494c53

 Length: 00000001

Dumping Section 0:

 Start: 0000006c [Verified]

 Compression: 4c5a4f43

 Encryption: 00005243

 Length: 00000000 [Signature Present]

 Flags:

 Zlib Compressed

 Not Encrypted

 Section Signature Present:

 Algorithm: 01004843 [SPMAA32]

 Sig Length: 00000004

 Dumping 4 bytes: 1d 0a a5 e8

 Comp Flag: 000aa483

Figure 2. Listing the table of contents and section list from a sophtainer file.

The header in Figure 2 describes a single zlib compressed

section, with a SPMAA32 signature. SPMAA is the weak,

proprietary, 64bit feistel block cipher often used by Sophos,

a thorough examination and working implementation is

presented in Section V. Sophos often truncate the 64bit

SPMAA state to 32bits, as is the case with sophtainer

section signatures, weakening it further.

Once extracted, Section data begins with a short header

describing the contents, and a 64bit flag indicating the

section type (along with compression and encryption

status). The section flags I have observed to date are listed

in Figure 3.

typedef enum {

 SOPH_SECTION_NAME = 'lh',

 SOPH_SECTION_IDE = 'edi',

 SOPH_SECTION_TIMESTMP = 'pmtsemit',

 SOPH_SECTION_APPC = 'cppa',

 SOPH_SECTION_VDL1 = '10ldv',

 SOPH_SECTION_VDL2 = '20ldv',

 SOPH_SECTION_VDL3 = '30ldv',

 SOPH_SECTION_VDL4 = '40ldv',

 SOPH_SECTION_SUS0 = '0sus',

 SOPH_SECTION_XVDL = 'ldvx',

} stype_t;
Figure 3. List of section type flags.

Further technical examination of the sophtainer files, and

tools to parse, extract and create these files accompany this

paper.

Parsing IDE Section Data

 The Sophos virus signatures are contained within

the ‘IDE’ sections of sophtainer files. Using the sophtainer

utility accompanying this paper, we can extract the contents

to examine them, as demonstrated in Figure 4.

$./sophtainer --dump-section 0 < data/vdl01.vdb

Dumping Section

 Flag: 54434553

 Type: 306c6476

[VDL Section, unpacking contents.]

Version: 05

Type: 000d

[CHUNK 0, TYPE IDE_CHUNK_TYPE_CLASSDICT, 230 BYTES]

 0003: 4d e4 4c 01 01 42 01 16 4e M.L..B..N

[…]

Figure 4. Extracting an IDE section, and parsing the first IDE chunk.

The IDE sections are organised into variable width chunks.

The first byte of each chunk describes the class and type,

followed by a variable width big-endian length. Certain

chunk types are container chunks, and contain a sequence

of sub-chunks immediately after the chunk header. These

details are described in the documentation accompanying

this paper, for now we will concentrate on understanding

the signature definition chunks.

Deciphering a signature chunk.

 A sample decoded signature chunk for a pattern

Sophos calls “Turbo 448” can be observed in Figure 14.

The primary components of the signature definition are the

Virus Name, followed by one or more bytecode programs

that describe how to identify the file.

Sophos execute the bytecode program for each input,

deciding if the contents matches or not determines whether

Sophos considers the file malicious.

Bytecode programs.

 I have written a sample disassembler for the

bytecode format used by Sophos. The VM is a simple stack

based interpreter, with single byte opcodes followed by a

variable number of operand bytes. The VM has an RPN-

like stack for computation, and register that holds the

current file pointer, and six named locations (registers).

A table containing some sample opcodes is presented in

Figure 5.

Opcode Description

VDL_OP_CRC32 96 Match crc32 n bytes (ones

complement)

VDL_OP_NEXT FA Increment the file pointer.

VDL_OP_READSW E1 Read word onto stack.

VDL_OP_LOADIWSW DE Load immediate word onto stack.

VDL_OP_SEEKSW E8 Pop word, seek to absolute offset.

VDL_OP_SEEKIB EB Move file pointer forward n bytes.

VDL_OP_FADJUSTSW CB Adjust next value on stack.

VDL_OP_SUBSW D6 Pop two words, subtract, push

result.

VDL_OP_SEEKIW F8 Seek to immediate offset.

Figure 5. Sample opcodes for Sophos bytecode VM.

The majority of signatures that Sophos distribute begin

with a literaliw opcode, which locates a hardcoded 16 bit

value, which is then followed by a CRC32 on the

proceeding data. There are more complex signatures, and

some less complex, some sample programs are presented

below.

0000: fb eb 7b literaliw eb 70

0003: fc 90 literalib 90

0005: eb 03 seekib 03

0007: 96 06 2c b0 28 73 crc32 06 2c b0 28 73

000d: fa next

000e: fa next

000f: fb 75 02 literaliw 75 02

0012: eb 09 seekib 09

0014: 96 27 13 e1 98 0e crc32 27 13 e1 98 0e

001a: ed hlt

This program, a definition called “Attention 629” is a

slightly more complex example, containing more literal

bytes and some file pointer manipulation.

The patterns Sophos distribute vary in complexity, the

simplest examples are of the following form.

 0000: fc 50 literalib 50

 0002: f4 02 ba bb literalibv 02 ba bb

 0006: fb 20 01 literaliw 20 01

 0009: fb 90 90 literaliw 90 90

 000c: ed hlt

The previous example simply matches six literal

consecutive bytes (the literalibv opcode matches any

one of the specified bytes).

Signature Design

 The core theme of the virus definitions

distributed by Sophos is to find a section of code that

Sophos feels is unique, and then CRC32 it. The rationale

for relying on such weak protection against signature

collisions is unclear, but due to the heavy misuse of

cryptography throughout Sophos products, it is likely due

to a misunderstanding of CRC32 characteristics.

Collision resistance

 It is self-evident that one of the core goals of an

anti-virus signature should be to minimise false positives.

There is a very large body of work published on this topic

that Sophos have ignored, resulting in a very weak

signature scheme.

In fact, it is not simply easy to find false positives; it is easy

to generate pre-images for Sophos signatures, making them

vulnerable to a class of attacks known as ‘pool pollution’.

These attacks are described in more detail in Section X.

Generating pre-images

 It is well understood that CRC32 is not resistant

to pre-image attacks (6); in fact we can automatically

generate samples to match most Sophos signatures. A

demonstration is presented in Figure 15.

Signature Quality

 Sophos claim that their researchers try to match

generic code, so that variations may also match the same

signature. We tested this claim by disassembling sample

signatures for malware samples, and finding what code was

used in the signatures.

We see little evidence that Sophos researchers are aware of

the context of the code they are looking at, often irrelevant,

trivial, or even dead code is used.

TODO: Add some examples patterns and show code from

original samples.

Summary

 Sophos signatures are distributed in bytecode

format for a proprietary VM.

 The signatures heavily rely on CRC32.

 Signatures tend to be of poor quality, often

matching irrelevant or dead code sequences.

 The signatures used by Sophos can be considered

weak at best.

Tools to understand, create, and disassemble the bytecode

used by Sophos are presented in the Appendix.

Signature Attacks

TODO

 Pool pollution attacks.

 Pre-image disruption attack.

 Defeating the authentication.

IV. BUFFER OVERFLOW PROTECTION

“This detection system will catch attacks targeting

security vulnerabilities in both operating system software

and applications.”. (4)

Sophos position their buffer overflow protection as one of

the four major components of their product (4), but

describe nothing about what it does.

This section presents an analysis of this Sophos component.

Key Findings

 Despite misleading claims to the contrary (5), this

component will only operate on versions of

Windows prior to Vista.

 Two weak forms of runtime exploit mitigation

are implemented.

 Sophos use inappropriate and weak cryptographic

primitives to obscure sensitive implementation

details from attackers.

 Superior solutions written by real experts in

exploit mitigation are available at no cost.

Design

 The buffer overflow protection component is

implemented entirely in userspace, and loaded into the

address space of applications using Appinit_Dlls4.

Sophos use the Microsoft Detours (6) runtime

instrumentation framework to intercept execution of

various Windows APIs, where they insert runtime integrity

checks.

Sophos had intended for these integrity checks to

implement two different mitigation strategies:

 Prevent exploitation of stack buffer overflows

using SEH overwrites.

 Detect the use of the return-to-libc exploitation

technique.

These strategies are evaluated below.

SEH Overwrite Protection

 SEH overwrites were traditionally the simplest

method of exploiting stack buffer overflows on Windows.

However, adoption of toolchain and runtime mitigations

developed by Microsoft (SafeSEH, SEHOP) has effectively

neutered what had previously been a very trivial

exploitation technique.

Nevertheless, SafeSEH is only available at build time5, and

SEHOP is only available on versions of Windows released

since Vista Service Pack One. Therefore, those applications

not built with SafeSEH on Windows XP and Windows

Server 2003 remain exploitable by even low-skilled

attackers.

This topic has been explored in detail by Matt Miller,

generally recognised as one of the most important

researchers in Windows security, in his paper (7). Matt

describes how a runtime SEH overwrite protection might

be implemented.

Exception Handler Chain Verification

 In brief, the core insight introduced in (7) was

that by inserting a canary at the tail of the exception

handler chain6, the integrity of the list can then be verified

at exception dispatch by walking through each link and

checking the list terminus. An attacker cannot easily

maintain this property; therefore the system can verify the

chain has not been tampered with before trusting it.

4 The Appinit_Dlls list is processed during initialisation of USER32; therefore

applications that do not load USER32 are unaffected.

5 Furthermore, SafeSEH is generally considered weak, due to well-known attacks if a

single loaded module does not enable it. This may change as adoption increases.

6 The chain is effectively a linked list of function pointers.

A good quality implementation of this mitigation

(including source code) is available from (8). The

pseudocode implementation from (7), intended to be called

during exception dispatch, is quoted in Figure 6.

CurrentRecord = fs:[0];

ChainCorrupt = TRUE;

while (CurrentRecord != 0xffffffff) {

 if (IsInvalidAddress(CurrentRecord->Next))

 break;

 if (CurrentRecord->Next == ValidationFrame) {

 ChainCorrupt = FALSE;

 break;

 }

 CurrentRecord = CurrentRecord->Next;

}

if (ChainCorrupt == TRUE)

 ReportExploitationAttempt();

else

 CallOriginalKiUserExceptionDispatcher();

Figure 6. The pseudocode for Matt Miller’s runtime exception handler chain

integrity verification, which effectively binds the difficulty of SEH overwrite

exploitation to the implementation of ASLR on the host.

Sophos Implementation

 While clearly inspired by (7), the implementation

in Sophos demonstrates a fundamental misunderstanding of

the attacks that Matt was working to prevent. At best it can

be considered a weak obfuscation that prevents the most

trivial existing exploits from functioning.

Simple adjustments to an existing exploit can be made to

bypass the checks that Sophos perform.

Pseudocode for the implementation found in Sophos is

presented in Figure 7, based on reverse engineering the

hooks found in sophos_detoured.dll.

CurrentRecord = Tib->ExceptionList;

for (i = 0; i < 2; i++) {

 if (IsBadReadPtr(CurrentRecord, Size)) {

 break;

 }

 if (CurrentRecord->Handler >= Tib->StackLimit

 && CurrentRecord->Handler <= Tib->StackBase) {

 SuspendCurrentThread();

 }

 if (CurrentRecord->Next == -1) {

 break;

 }

 CurrentRecord = CurrentRecord->Next;

}

CallOriginalExceptionDispatch();
Figure 7. Reverse engineered pseudocode for Sophos SEH Overwrite

protection.

This code simply verifies that the handler for the first two

exception records do not point within the current thread

stack. The intention was clearly to prevent pointing the

exception handler back into the buffer that the attacker

controls, however this is such a ludicrously weak

mechanism that bypassing it is trivial.

Code suitable for reproducing these findings on machines

using Sophos products accompanies this paper.

A Simple demonstration bypassing this weak protection is

also provided.

Summary

 The SEH overwrite protection in Sophos is very

weak.

 The implementation only verifies that the first

two exception records do not point within the

current thread stack.

 Even low-skilled attackers can trivially bypass

this mitigation with minimal effort.

 Sophos misunderstood published information on

this topic, resulting in a broken implementation

of what is essentially a solved problem.

 The obvious attack against Sophos SEH

protection is return-to-libc, however this is

discussed in the next section.

Ret2libc Detection

 Ret2libc (return-to-libc) is an exploitation

technique originally developed by Solar Designer to

demonstrate weaknesses in early stack buffer overflow

mitigation techniques. While fundamentally the same

principle, the attack has been generalised over time and is

now sometimes referred to as ROP, Return Oriented

Programming.7

In brief, during classical stack buffer overflow scenarios, an

attacker modifies the return address to point back into the

buffer they control. Early exploit mitigations focussed on

these attacks, meaning the stack might be randomised or

non-executable, resulting in the attacker being unable to

return into the same buffer he is using to modify the stack

frame. Solar Designer defeated this by setting up the

parameters for a call into a library routine, and then

returning into a static location – the c library.

Ret2libc is still an important exploitation technique, and is

often part of the attacker’s solution to the NX/DEP puzzle.

A strong ASLR implementation is generally considered the

best protection against ret2libc; if attackers cannot predict

where the code sequences they want are located, they

cannot return into them8. However, it is a reasonable

observation that ASLR is not strong on all Windows

platforms or with all applications, and Sophos have

attempted to implement a solution to this in their Buffer

Overflow Protection product. We reverse engineer and

evaluate their ideas in this section.

7 The author prefers the original ret2libc term, and will use it throughout this paper.

8 There are well understood generic attacks against ASLR that are not explained here for

brevity. Briefly, you must leak an address, find something static, or increase your chances

of getting lucky.

Protected Functions

 The Sophos solution appears to be called

“Protected Functions”9. In summary, Sophos create a list of

Windows APIs that they believe are most likely to be used

in a ret2libc exploit, and then intercept them using

Microsoft Detours. When their detour callback is executed,

they verify the callsite was from within an expected module

before calling the original routine.

This solution is fundamentally broken. It is difficult to

believe that anyone with even a rudimentary understanding

of control flow or the organization of computer programs

could have believed it offered any challenge to attackers

whatsoever.

Indeed, it will be a considerably more challenging task to

enumerate all the flaws with this silly idea. Nevertheless, I

will persevere, and attempt to point out some of the major

problems below.

Ret2libc generality

 Sophos fail to understand that although Solar

Designer demonstrated returning directly to exported

library functions, he did so because it was convenient, not

because of any technical limitation. Modern ret2libc attacks

have made finding collections of useful code sequences

(often referred to as gadgets) a science, and various

frameworks exist for producing useful payloads out of

whatever code you have available.

Therefore, an attacker can simply piece together the

functionality they want from other places, or even simply

indirectly call the routines.

Attempting to enumerate known bad

 Sophos try to enumerate the exports that they

think attackers might want to return into in their exploit

payload. Of course, there are typically thousands of these

exports mapped into the address space of a typical

Windows application (even ignoring the ret2libc section

above), some of which Sophos cannot possibly know in

advance.

The result is that you can simply avoid the routines that

they hook, obtaining the same functionality elsewhere,

thereby defeating their protection.

Improper use of cryptographic primitives

 Interestingly, Sophos appear to have realised that

an attacker can simply avoid the routines that they

intercept. Their solution to this problem was to obfuscate

the list of APIs with a weak proprietary feistel cipher called

SPMAA. The intention was presumably to make attackers

9 This is based on debugging messages observed in the product.

believe that there are hidden “landmines” distributed

throughout the Windows API, forcing them to work harder.

Of course, the hardcoded 64bit symmetric key (which

happens to be 0xd6917912f2e43923) is easily recoverable

using standard reverse engineering techniques, making

their obfuscation moot.

However, for extra security, the decrypted contents are then

optionally decrypted with the XOR cipher, using the

hardcoded, 8bit key, 0x93. This guarantees that any

attacker will simply give up writing their ret2libc payload,

as they will be unable to concentrate due to uncontrollable

laughter.

Using the spmaautil utility from Figure 16, the

command demonstrated in Figure 8 will extract the

decrypted BOPS (Buffer Overflow Protection)

Configuration, allowing you to examine the list of

“Protected” APIs.

$./spmaautil --output=results \

 --setkey=$((0xd6917912f2e43923)) \

 --filename=Config.bops \

 -–decrypt

Figure 8. Decrypting the Sophos BOPS configuration file.

Popular programs are whitelisted.

 The BOPS configuration file used by Sophos also

includes a list of whitelisted programs that these protections

are applied to. Examples include quicktimeplayer.exe,

powerpnt.exe, acrord32.exe, outlook.exe, and so on.

Assuming Sophos redesigned their ret2libc protection to

actually work; it cannot be used to protect any other

software.

Summary

 The ret2libc mitigation in Sophos is very weak,

and primarily relies on secrets.

 Sophos protect their secrets using a weak, poorly

designed crypto scheme.

 Sophos misunderstood the generality of the

ret2libc exploitation technique.

 Very few applications are supported.

Sample programs and reference material enabling you to

reproduce these results accompany this paper.

Further information about SPMAA and its use in Sophos

products is available in Section V. SPMAA.

Recommendations

 The BOPS component of Sophos Antivirus is

essentially useless. At best you could argue it might require

an attacker to make trivial modifications to his existing

exploit.

Studying BOPS has been revealing, demonstrating a

fundamental failure by Sophos to understand the most basic

security concepts.

Genuine runtime exploit mitigations exist for older

Windows systems. The author recommends you evaluate

WehnTrust and EMET.

V. SPMAA

The hallmark of Sophos products is inappropriate or weak

use of cryptography, and the algorithm Sophos prefers is a

weak feistel block cipher called SPMAA. SPMAA appears

to be a proprietary invention of Sophos, which they use for

authentication and obfuscation of product data.

Key Findings

 SPMAA is used throughout Sophos products.

 The cipher has not been published or peer

reviewed.

 Inherently weak characteristics, possibly a very

dated design.

 Probably designed by a real cryptographer, but

has been misused (and used for too long) by

Sophos.

Design

SPMAA is a symmetric cipher, meaning that

Sophos simply hide the key within the product, and hope

attackers do not know how to use a disassembler.

In this section we present a working implementation of the

SPMAA algorithm, and a command line tool to use it,

along with the encryption keys recovered from Sophos

products.

A full implementation in C is provided in the Appendix.

Summary

 Sophos relies on a weak encryption scheme for

secrecy and authentication throughout the products. While

the cipher itself is not obviously broken, despite the lack of

peer review, it is inherently dated and weak by design.

Sophos misuse cryptographic primitives throughout their

product.

V. GENES AND GENOTYPES

“Sophos Behavioral Genotype is a powerful technology

that is able to detect malicious behaviour even before

specific signature-based detection has been issued. This

provides zero-day protection to all customers using

Sophos’ […] products” (12)

 What Sophos refers to as Genotypes are simply

combinations of arbitrary software characteristics. These

characteristics can be assigned during analysis, or by

combinations of signatures called filters (or during pre-

execution analysis).

Key Findings

 Genes are simply software characteristics that are

applied as tags during analysis or at runtime.

 Characteristics can be things like specific API

imports, instructions used, or embedded strings.

 Combining these characteristics together can be

used to make more signature definitions.

Design

 An American company called “Strategic Patents”

(presumably) representing Sophos applied for a patent on

this concept in the USA, providing some insight into the

design.

“Each gene may describe a different behaviour or

characteristic of potentially malicious applications or

other file. For example, potentially malicious applications

may copy itself to a %SYSTEM% directory. Therefore a

gene may be created to identify this functionality by

matching the sequence of API calls and the strings that

are referenced" (13)

Examples

 Genes can be understood more easily by referring

to them as tags. Sophos simply tag executables with new

labels as they analyse or monitor it. When a combination of

tags have been collected that match a pattern (or genotype),

Sophos detect it as malicious.

Sophos list some examples in their patent application,

which I’ve reproduced in Figure 9.

Figure 9 Sophos example Genes

The pre-execution emulation can also apply tags, such as

unusual instructions, operations, or addresses observed.

VI. PRE-EXECUTION ANALYSIS

“Advanced emulation technology along with an online

decompressor for scanning multi-layer attachments is

utilized to detect polymorphic viruses. The robust engine

supports multiple scanning modes to optimize

performance.”

Sophos promote their pre-execution analysis as a generic

solution to obfuscated or packed malicious code. In reality,

the supported operations are very specific and of limited

value.

Key Findings

 Sophos include a very simplistic x86 emulation

engine that records memory references and

execution characteristics.

 The emulation is a poor representation of x86,

and only executed for around 500 cycles.

 Detecting the Sophos emulator is trivial, but

spinning for 500 cycles on entry is sufficient to

subvert emulation.

 Minimal OS stubs are present, but demonstrate a

lack of understanding of basic concepts.

 Sophos includes automated unpacking of many

archive and executable packer types, but are far

too specific to be useful.

 A Javascript interpreter is used to emulate PDF

and HTML, exposing considerable attack surface.

Native Code Emulation

 Executable code is simulated in a simplistic x86

emulator for a few hundred cycles during analysis. The

emulator records memory references and allows self-

modifying code to execute before the static file signatures

are applied. The emulator also records characteristics that

are used in gene matching.

Evidently the key intention of the emulation is to allow

trivial decryption loops to run before applying static file

signatures. Many naïve programmers use trivial XOR

decryption loops or similar simple tricks to obfuscate

program code or data. Sophos also uses these tricks to

obfuscate their product data.

Design

 The emulator supports a small subset of x86

features; there is no concept of CPL or x87 support, for

example. A minimal stub exists to service software

interrupts for MS-DOS and Windows executables.

Bizarrely, the interrupt handler has been broken since its

original implementation, due to Sophos misunderstanding

of Windows NT internals.

Pseudocode representing the handler for software interrupt

2Eh (Windows NT System Call) is displayed in Figure 10.

case INSTRUCTION_CLASS_INT:

 if (!Emulator->EmulatorFlags & EMULATOR_32BIT)) {

 MSDOSInterruptHandler(State, OperandByte);

 break;

 }

 AddGeneType(Emulator, 0, GENE_TYPE_INTOP, OperandByte);

 AddGeneType(Emulator, 0, GENE_TYPE_INTVA,

 Emulator->RegsEIP –

 DecodedInstruction->SourceBytes);

 // Test for Windows System Call

 if (OperandByte == 0x2E) {

 SysNum = Emulator->RegsEAX; // Syscall Number

 Params = Emulator->RegsEDX; // Parameter Stack

 // This doesn't make any sense, these numbers

 // change for every SP.

 //

 // 0xBD could be

 // NtOpenPrivateNamespace (Windows Vista)

 // NtRaiseException (Windows 2003)

 // NtReleaseSemaphore (Windows XP)

 // NtSetDefaultUILanguage (Windows 2000)

 // NtTestAlert (Windows NT)

 //

 // 0xBE could be

 // NtOpenObjectAuditAlarm (Windows Vista)

 // NtRaiseHardError (Windows 2003)

 // NtRemoveIOCompletion (Windows XP)

 // NtSetEAFile (Windows 2000)

 // NtSetUnloadDriver (Windows NT)

 if (SysNum != 0xBD && SysNum != 0xBE)

 goto next;

 EmulateExceptionDispatch(0xC0000014, Value);

Figure 10 Pseudocode for software interrupts.

This code demonstrates a fundamental misunderstanding of

basic NT concepts, the intent of the author was to emulate

an exception dispatch on code calling

NtRaiseException() directly. However, Sophos

failed to realise that System Call numbers vary across

windows versions. The original programmer copied the

system call numbers from the SSDT of a Windows Server

2003 SP1 kernel, not realising that these did not apply to

any other windows release (15). This entirely nonsense,

non-functioning code10 has remained undisturbed for many

years.

Numerous similar mistakes and misunderstandings plague

the Sophos codebase.

Javascript Emulation

 Applying the same logic to dynamic HTML and

PDF input, Sophos have built an ecmascript interpreter into

their product, based on SEE (Simple Ecmascript Engine) a

freely available BSD licensed interpreter. The interpreter is

used to emulate javascript payloads, record characteristics

and allow simple decryption loops to run.

SEE is unmaintained and abandoned, and has received little

attention from security researchers, who focus on more

widely used implementations such as SpiderMonkey,

Tamarin and V8.

As a result, SEE suffers from a number of documented

problems handling pathological expression, including

broken locale handling, for example Figure 11

demonstrates a code pattern that SEE fails to handle.

(new String()).localeCompare(Math.abs(-1));

Figure 11. Known problems in SEE locale handling.

10 With the exception of executables specifically written for a small number

of unsupported Windows 2003 Server releases.

Executable Packers

 Executable packers are self-extracting

compressed executables, widely used for software

distribution. However, packers are a simple way for

unskilled users to transform one program into an equivalent

but different program, thus defeating blacklisting schemes

with very low skill requirements.

For this reason, Antivirus vendors often tout their

automated unpacking as a competitive advantage. In

theory, the more packers that a vendor recognises and

unpacks, the less opportunity for unskilled users to bypass

their blacklists (of course even a moderately skilled

attacker could simply write an equivalent program).

Interesting coverage of unpacking support in various

Antivirus programs is available in (15).

Executable Packers Supported

 The native packers11 I have observed support for

in Sophos Antivirus are listed in Figure 12.

Packer Year Summary

DIET 1992 Dr. Teddy’s ‘DIET’ program for

files.

PKLITE 1996 PKZIP for executable files.

LZEXE 1989 Fabrice Ballard’s12 executable

packer.

UPX 2001 The Ultimate Packer for

eXecutables.

PETITE 1999 Ian Luck’s executable packer.

ASPACK 1999 Alexey Solodovnikov’s Packer.

FSG 2002 Fast Small Good , particularly

popular in Poland.

PECompact 2001 PE Compact

Figure 12 Packers Supported by Sophos Antivirus

Unpacker Quality

 With the exception of PECompact support which

appears to have been licensed from the vendor, the

unpacking routines appear to be original code developed by

Sophos. The decoders generally only handle default options

and codecs, and cannot tolerate even minor stub

modifications.

The majority of the packers supported are old and outdated

and of questionable utility, many do not support modern

executables and are largely irrelevant.

Unpacker Generality

The routines implemented by Sophos often

support one very old specific version of the packer. It took

considerable effort to locate supported builds from

shareware archives in order to test the functionality, often

11 Sophos define additional unpackers using VDL, however these are a

negligible increase in attack surface.

12 Fabrice Bellard is now famous as the author of QEMU.

requiring dozens of versions to be tested before an

executable that could be unpacked was found.

The difficulty in producing a supported input for the

purposes of testing demonstrates the effective obsolescence

of this code13. Even an unskilled, naïve adversary simply

trying to perform a simple transformation would not have

any trouble subverting the automated unpacking process.

Summary

 Automated unpacking is a considerable attack

surface.

 Only old and outdated versions of packers are

supported.

 Many of the packers supported are irrelevant on

modern systems.

Archives and Containers

 Sophos supports a large number of largely

esoteric archive and container formats, used for extracting

and identifying the relevant contents of archive files. While

there is a large volume of these extractors, they vary

considerably in quality.

Many of the decoders are simply bizarre nonsense. For

example, the ELF decoder specifically excludes Siemens

TriCore executables (used in industrial microcontrollers).

ELF defines dozens of esoteric architectures like the Fujitsu

FR20 or the Matsushita MN10200, all of which are

perfectly valid.

 // This makes no sense.

 if (ElfMachine != EM_TRICORE){

 // Matches ET_NONE, ET_REL, ET_EXEC and ET_DYN

 if ((ElfType - 1) <= 2)

 return CLASS_ELF_STORAGE.Name;

 return NULL;

 }

Figure 13. Pseudocode for a bizarre architecture exclusion in the ELF

decoder.

The most likely explanation is that a customer complained

that one of their embedded executables for a

Siemens/Infineon TriCore device was triggering a CRC32

collision with one of the static file signatures Sophos

distribute. Rather than fix the problem properly, Sophos

simply excluded the entire architecture, no longer

recognising them as executable.

Summary

 Emulation is trivial for attackers to detect, and

provides little value for such a large attack

surface.

13 See Appendix for list of packer builds that were found to function.

 Unpackers and decompressor are high-volume

and low quality, providing little value and are

often outdated or irrelevant.

 Sophos have poor understanding of NT internals

and executable file formats, ostensibly one of

their core focus areas.

 Sophos perform little testing to verify their

scanning process works as intended, often

shipping broken nonsense code.

 Pre-execution analysis represents a considerable

attack surface, including a full software machine

emulator, a javascript interpreter, and hundreds of

decompression codecs and unpackers.

VII. ATTACK SURFACE ENUMERATION

There is little intersection between the work of antivirus

vendors and that of security researchers. Security

researchers operate on the assumption that users make good

trust decisions, and then try to find ways of subverting that.

Antivirus vendors, however, work on the assumption that

users are either unwilling or unable to make trust decisions.

Sadly, the antivirus vendors are correct. Many users,

perhaps the majority, are incapable of making good trust

decisions. This is not entirely unreasonable; the process can

be complex, technical and confusing.

While there is general agreement that the solution to this

problem is to offload those decisions to someone (or

something) that is capable, we generally diverge on how to

approach to this.

Antivirus Products

 The promise of antivirus software is that users

will be less dependent on making trust decisions.

Evaluating antivirus software requires understanding of

how close to fulfilling this promise the vendor comes, and

how much attack surface you must trade to achieve it.

In the case of Sophos, some of the major components that

contribute to the attack surface includes:

 An x86 software emulator executed on untrusted

input.

 An unmaintained and poorly studied Ecmascript

interpreter.

 Large numbers of archive unpackingand

decompression routines.

 Packed executable processing.

 Weak authentication scheme on configuration

data.

VIII. CONCLUSION

Sophos demonstrate considerable naivety in many topics

key to the efficacy of their product. Their widespread use

of XOR encryption for secrecy, and their poor

understanding of rudimentary exploitation concepts like

return-to-libc reinforce this.

The promise of antivirus is that users will be less dependent

on making good trust decisions. While certainly desirable,

Sophos appear ill equipped to keep this promise with their

current technology.

The pseudo-scientific terminology used by Sophos to

promote their software masks elementary pattern matching

techniques. While their attempt at implementing runtime

exploit mitigation should be applauded, their failure to

understand the subject area resulted in a substandard

product far exceeded by existing published solutions.

IX. REFERENCES

TODO

1. McMillan, Robert. Security Vendors Slam Defcon

Virus Contest. PCWorld Business Center. [Online] 26

April 2008. [Cited: 13 April 2011.]

http://www.pcworld.com/businesscenter/article/145148/sec

urity_vendors_slam_defcon_virus_contest.html.

2. SophosLabs. Sophos HIPS. Sophos. [Online]

http://www.sophos.com/security/sophoslabs/sophos-

hips/detection-layers.html.

3. AV comparatives. [Online] http://www.av-

comparatives.org/seiten/ergebnisse/methodology.pdf.

4. Sophos. Sophos SAVI Interface Factsheet. [Online]

http://www.sophos.com/sophos/docs/eng/factshts/Sophos-

SAVI-dsus.pdf.

5. —. Sophos Reviewers Guide. [Online]

http://www.sophos.com/sophos/docs/eng/factshts/Sophos-

SAV-ReviewersGuide-uk.pdf.

6. —. IDE downloads. [Online]

http://www.sophos.com/downloads/ide/.

7. Tinnes, Julien. Challenge Securitech (french). [Online]

http://www.cr0.org/misc/jt-securitech-06-11.pdf.

8. Sophos. Sophos HIPS: Layers of Detection. [Online]

http://www.sophos.com/security/sophoslabs/sophos-

hips/detection-layers.html.

9. —. System Requirements. Sophos Anti Virus Product

Website. [Online] http://www.sophos.com/products/small-

business/sophos-anti-virus/system-requirements.html.

10. Microsoft. Microsoft Detours. [Online]

http://www.microsoftstore.com/store/msstore/en_US/pd/pr

oductID.216531800/search.true.

11. Preventing the Exploitation of SEH Overwrites .

Miller, Matt. 5, s.l. : Uninformed, 2006.

12. Miller, Matt. WehnTrust. [Online]

http://wehntrust.codeplex.com/.

13. Sophos. Sophos Behavioral Genotype Protection.

[Online]

http://www.sophos.com/support/knowledgebase/article/173

15.html.

14. Stragic Patents P.C. US Patent Provisional

application No. 60/825,557.

15. Metasploit Project. [Online]

http://dev.metasploit.com/users/opcode/syscalls.html.

16. PolyPack: An Automated Online Packing Service for

Optimal Antivirus Evasion. Jon Oberheide, Michael

Bailey, Farnam Jahanian.

17. Sophos. Sophos Endpoint Security and Control Help.

X. MISCELLANEOUS FIGURES

[CHUNK 2799, TYPE IDE_CHUNK_TYPE_SIGNATURE (1), CLASS IDE_CHUNK_CLASS_SMALL (4), 37 BYTES]

 4ceb: 41 23 0a 43 09 54 75 72 62 6f 2d 34 34 38 42 01 A..C.Turbo.448B.

 4cfb: 01 49 12 45 10 fb e8 00 96 1e 43 66 1b 24 96 20 .I.E......Cf....

 4d0b: bc 81 b7 d4 ed

[CHUNK 2800, TYPE IDE_CHUNK_TYPE_SIGFLAGS (10), CLASS IDE_CHUNK_CLASS_EMPTY (0), 1 BYTES]

 4ced: 0a .

[CHUNK 2801, TYPE IDE_CHUNK_TYPE_PSTRINGA (3), CLASS IDE_CHUNK_CLASS_SMALL (4), 11 BYTES]

 4cee: 43 09 54 75 72 62 6f 2d 34 34 38 C.Turbo.448

[CHUNK 2802, TYPE IDE_CHUNK_TYPE_SUBCHUNKCOUNT (2), CLASS IDE_CHUNK_CLASS_SMALL (4), 3 BYTES]

 4cf9: 42 01 01 B..

[CHUNK 2803, TYPE IDE_CHUNK_TYPE_BYTECODEHEADER (9), CLASS IDE_CHUNK_CLASS_SMALL (4), 20 BYTES]

 4cfc: 49 12 45 10 fb e8 00 96 1e 43 66 1b 24 96 20 bc I.E......Cf.....

 4d0c: 81 b7 d4 ed

[CHUNK 2804, TYPE IDE_CHUNK_TYPE_BYTECODE (5), CLASS IDE_CHUNK_CLASS_SMALL (4), 18 BYTES]

 4cfe: 45 10 fb e8 00 96 1e 43 66 1b 24 96 20 bc 81 b7 E......Cf.......

 4d0e: d4 ed ..

 0000: fb e8 00 literaliw e8 00 ; match literal 16bit immediate

 0003: 96 1e 43 66 1b 24 crc32 1e 43 66 1b 24 ; match crc32 n bytes (ones complement)

 ; generating 30 byte pre-image for crc 0x43661b24...

 0000: 97 97 61 d9 38 9c 97 97 ..a.8...

 0008: 97 97 97 97 97 97 97 97

 0010: 97 97 97 97 97 97 97 97

 0018: 97 97 97 97 97 97

 0009: 96 20 bc 81 b7 d4 crc32 20 bc 81 b7 d4 ; match crc32 n bytes (ones complement)

 ; generating 32 byte pre-image for crc 0xbc81b7d4...

 0000: 4b 24 44 b0 c4 c4 c4 c4 K.D.....

 0008: c4 c4 c4 c4 c4 c4 c4 c4

 0010: c4 c4 c4 c4 c4 c4 c4 c4

 0018: c4 c4 c4 c4 c4 c4 c4 c4

 000f: ed hlt ; end of program
Figure 14. Sample decoded virus signature.

[CHUNK 401, TYPE IDE_CHUNK_TYPE_SIGNATURE (1), CLASS IDE_CHUNK_CLASS_SMALL (4), 37 BYTES]

 0ba3: 41 23 0a 43 09 41 49 44 53 2d 38 30 36 34 42 01 A..C.AIDS.8064B.

 0bb3: 01 49 12 45 10 fb 9a 00 96 1e aa af bf aa 96 20 .I.E............

 0bc3: 6c 69 f5 7c ed li...

[CHUNK 402, TYPE IDE_CHUNK_TYPE_SIGFLAGS (10), CLASS IDE_CHUNK_CLASS_EMPTY (0), 1 BYTES]

 0ba5: 0a .

[CHUNK 403, TYPE IDE_CHUNK_TYPE_PASCALSTRING (3), CLASS IDE_CHUNK_CLASS_SMALL (4), 11 BYTES]

 0ba6: 43 09 41 49 44 53 2d 38 30 36 34 C.AIDS.8064

[CHUNK 404, TYPE IDE_CHUNK_TYPE_SUBCHUNKCOUNT (2), CLASS IDE_CHUNK_CLASS_SMALL (4), 3 BYTES]

 0bb1: 42 01 01 B..

[CHUNK 405, TYPE IDE_CHUNK_TYPE_BYTECODEHEADER (9), CLASS IDE_CHUNK_CLASS_SMALL (4), 20 BYTES]

 0bb4: 49 12 45 10 fb 9a 00 96 1e aa af bf aa 96 20 6c I.E............l

 0bc4: 69 f5 7c ed i...

[CHUNK 406, TYPE IDE_CHUNK_TYPE_BYTECODE (5), CLASS IDE_CHUNK_CLASS_SMALL (4), 18 BYTES]

 0bb6: 45 10 fb 9a 00 96 1e aa af bf aa 96 20 6c 69 f5 E............li.

 0bc6: 7c ed ..

 0000: fb 9a 00 literaliw 9a 00 ; match literal 16bit immediate

 0003: 96 1e aa af bf aa crc32 1e aa af bf aa ; match crc32 n bytes (ones complement)

 ; generating 30 byte pre-image for crc 0xaaafbfaa...

 0000: 36 36 44 ea f8 ec 36 36 66D...66

 0008: 36 36 36 36 36 36 36 36 66666666

 0010: 36 36 36 36 36 36 36 36 66666666

 0018: 36 36 36 36 36 36 666666

 0009: 96 20 6c 69 f5 7c crc32 20 6c 69 f5 7c ; match crc32 n bytes (ones complement)

 ; generating 32 byte pre-image for crc 0x6c69f57c...

 0000: bc 32 28 c1 4e 4e 4e 4e .2..NNNN

 0008: 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNN

 0010: 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNN

 0018: 4e 4e 4e 4e 4e 4e 4e 4e NNNNNNNN

 000f: ed hlt ; end of program

$ printf "\x9a\x0066D\xea\xf8\xec666666666666666666666666\xbc\x32\x28\xc1NNNNNNNNNNNNNNNNNNNNNNNNNNNN" > VIRUSLOL.EXE

$ sav32cli.exe VIRUSLOL.EXE

Sophos Anti-Virus

Version 1.01.1 [Win32/Intel]

Virus data version 4.61G, January 2011

Includes detection for 2225186 viruses, trojans and worms

Copyright (c) 1989-2011 Sophos Plc. All rights reserved.

System time 13:51:58, System date 17 April 2011

Quick Scanning

>>> Virus 'AIDS-8064' found in file VIRUSLOL.EXE

1 file swept in 5 seconds.

1 virus was discovered.

1 file out of 1 was infected.

Please send infected samples to Sophos for analysis.

For advice consult www.sophos.com, email support@sophos.com

or telephone +44 1235 559933

Ending Sophos Anti-Virus.
Figure 15. Producing random pre-images for Sophos signatures.

XI. APPENDIX
#include <glib.h>

#include <string.h>

#include <stdbool.h>

#include "spmaa.h"

// This is an implementation of the proprietary SPA crypto algorithm used

// in Sophos products.

const static guint spmaa_index_vector[] = {

 5, 1, 6, 4, 7, 2, 1, 3,

 6, 3, 0, 7, 0, 4, 2, 5,

 4, 6, 7, 1, 2, 7, 5, 0,

 3, 5, 4, 2, 1, 0, 3, 6,

};

const static guint8 spa_lookup_a[] = {

 0xB2, 0xC8, 0x3E, 0xA8, 0x14, 0xD4, 0x54, 0x40,

 0x79, 0xEE, 0x24, 0xD3, 0x6F, 0x37, 0xC4, 0xE7,

 0x4F, 0x42, 0x82, 0xE9, 0xC5, 0x1D, 0x50, 0xB4,

 0x25, 0x97, 0x5D, 0x0E, 0xB5, 0xA5, 0x8F, 0x5E,

 0x95, 0x34, 0xAE, 0xBD, 0xFD, 0x5C, 0xAD, 0x5F,

 0x0C, 0xEA, 0x7A, 0xA7, 0x48, 0xEC, 0x6B, 0x08,

 0x45, 0x26, 0xCF, 0x1E, 0x9B, 0x7C, 0x8A, 0x18,

 0x98, 0x71, 0x65, 0x5B, 0xA2, 0x83, 0x3C, 0x91,

 0x88, 0x73, 0xC2, 0x7D, 0xC6, 0xCA, 0x78, 0xFA,

 0x6A, 0xF3, 0x9F, 0xF1, 0xD2, 0x19, 0x6E, 0x28,

 0x9C, 0x86, 0x30, 0x1A, 0x41, 0xCD, 0x35, 0xE2,

 0xCE, 0x7F, 0x68, 0x02, 0x29, 0x1F, 0x7B, 0xDB,

 0x57, 0x75, 0xF0, 0x6D, 0x12, 0x4B, 0x4E, 0xD6,

 0x09, 0x8B, 0x66, 0x31, 0x5A, 0xD7, 0x32, 0xF9,

 0xC9, 0x77, 0xBF, 0xB8, 0x11, 0x8D, 0xD1, 0x16,

 0x4C, 0xCB, 0xA1, 0x69, 0x3D, 0xAA, 0x0D, 0xD8,

 0x39, 0x6C, 0x94, 0xF6, 0xE4, 0x80, 0x61, 0xCC,

 0x93, 0xC7, 0x84, 0xEB, 0xE3, 0x99, 0xAF, 0x47,

 0x1C, 0x63, 0x4D, 0xBE, 0x74, 0xB7, 0x8C, 0x96,

 0xD0, 0x06, 0x56, 0xE8, 0x1B, 0x55, 0x3F, 0xFB,

 0x2F, 0x64, 0xFC, 0x52, 0x17, 0x36, 0x49, 0xED,

 0x67, 0x62, 0xE6, 0x43, 0x33, 0xA3, 0xDD, 0xBB,

 0x03, 0xDC, 0xD9, 0xB6, 0xF4, 0xDF, 0xAC, 0xC1,

 0x0A, 0x23, 0x87, 0x13, 0xFF, 0xEF, 0x22, 0x2E,

 0x85, 0xD5, 0xDE, 0xF8, 0xE1, 0x0F, 0x01, 0xAB,

 0x53, 0xF7, 0xE0, 0xB9, 0xC3, 0xDA, 0x9D, 0x9A,

 0x38, 0x58, 0xA9, 0xF2, 0x10, 0xB3, 0x90, 0x76,

 0x70, 0xBC, 0x2C, 0x60, 0x00, 0x92, 0xB1, 0x2A,

 0xE5, 0x21, 0xA4, 0xFE, 0x2B, 0x7E, 0xA6, 0x3A,

 0x0B, 0x72, 0xBA, 0x51, 0x44, 0xB0, 0xA0, 0x59,

 0x27, 0x05, 0x89, 0x07, 0x9E, 0x20, 0x81, 0x3B,

 0x8E, 0x46, 0xF5, 0x4A, 0x2D, 0x15, 0x04, 0xC0,

};

const static guint spa_lookup_b[] = {

 0x31, 0x7A, 0x09, 0xC1, 0x12, 0xEC, 0xA8, 0x6B,

 0x0D, 0xCD, 0x43, 0x6E, 0x23, 0xDF, 0xF9, 0xF5,

 0xF6, 0x0E, 0xF4, 0x60, 0x82, 0x77, 0xC5, 0x59,

 0xF0, 0x3C, 0xB2, 0xBC, 0x26, 0x4F, 0x11, 0xEB,

 0xFF, 0x9C, 0x80, 0x47, 0xC8, 0xAB, 0x90, 0xAC,

 0xD0, 0x45, 0x3F, 0x1B, 0x57, 0x50, 0x56, 0x6F,

 0x69, 0xE0, 0x30, 0xC3, 0x99, 0x44, 0xA5, 0x1D,

 0x5C, 0x81, 0xFE, 0x17, 0x28, 0x0A, 0x8E, 0x62,

 0x18, 0x35, 0x2C, 0x7E, 0x25, 0xD7, 0xE1, 0xA1,

 0xD4, 0x3B, 0x1A, 0x5F, 0x75, 0x5E, 0x74, 0xC4,

 0xE8, 0x9A, 0xAF, 0x5B, 0x10, 0x97, 0x40, 0x7B,

 0xBE, 0xFD, 0x08, 0x01, 0x96, 0xB7, 0x65, 0x37,

 0x88, 0xED, 0x7D, 0xD9, 0x58, 0x94, 0x4E, 0xEF,

 0xCC, 0x48, 0x3E, 0x15, 0x61, 0x38, 0x20, 0xA9,

 0xA7, 0x68, 0xB9, 0x8F, 0x24, 0xA2, 0xB5, 0x27,

 0x78, 0xDC, 0x13, 0xEE, 0x36, 0x4D, 0x5D, 0x2A,

 0x32, 0x8A, 0x6C, 0xCE, 0xE4, 0xF2, 0xBA, 0x41,

 0x49, 0xD1, 0xB8, 0x0B, 0xB6, 0x21, 0xF8, 0x04,

 0x9B, 0xB0, 0x05, 0x34, 0xF1, 0xC6, 0x55, 0x89,

 0xC0, 0x70, 0xD8, 0x8C, 0xBF, 0x9E, 0x0C, 0x64,

 0xC7, 0xE6, 0xE9, 0x1C, 0x02, 0xBD, 0x51, 0xB3,

 0x92, 0xCA, 0x3D, 0x00, 0xA4, 0x5A, 0xE7, 0xCF,

 0x8D, 0x7C, 0x4C, 0x9F, 0x83, 0x3A, 0xE2, 0xC2,

 0xE5, 0x73, 0xDD, 0xAD, 0x95, 0x76, 0x19, 0x9D,

 0x7F, 0x66, 0x71, 0xAA, 0xA6, 0x07, 0x2B, 0x2D,

 0x63, 0x84, 0xD3, 0xCB, 0xAE, 0x42, 0x14, 0x06,

 0x72, 0x2F, 0x6D, 0x22, 0xEA, 0xD6, 0x54, 0x1F,

 0x79, 0xFA, 0x16, 0xFB, 0x98, 0xB1, 0x0F, 0xFC,

 0xB4, 0xA3, 0x8B, 0xF3, 0xD5, 0xC9, 0xBB, 0x03,

 0x1E, 0xDE, 0xD2, 0x4A, 0x46, 0x91, 0x52, 0x67,

 0x85, 0x29, 0x87, 0x33, 0x93, 0x53, 0x86, 0x39,

 0xE3, 0x6A, 0x4B, 0xDB, 0xF7, 0xA0, 0x2E, 0xDA,

};

const static guint spa_lookup_c[] = {

 0x38, 0x4B, 0xA6, 0x87, 0x19, 0x73, 0x68, 0x51,

 0x3E, 0xC7, 0xAD, 0x1B, 0xC2, 0x25, 0x45, 0x94,

 0xE2, 0x6A, 0xF5, 0xBE, 0x09, 0x83, 0x97, 0x84,

 0x95, 0x91, 0x3D, 0xAA, 0x79, 0xF4, 0x8F, 0x9A,

 0xA1, 0x7D, 0x52, 0x18, 0xC9, 0x60, 0xB8, 0xEF,

 0xA4, 0x40, 0x62, 0xB4, 0xF2, 0xE4, 0xF9, 0xD0,

 0x00, 0x49, 0xC0, 0xA7, 0xFF, 0x85, 0xEE, 0xE9,

 0x88, 0xFD, 0x32, 0x71, 0x21, 0x31, 0x78, 0x33,

 0xAB, 0xE3, 0xB5, 0x56, 0x5B, 0xF6, 0x36, 0x9C,

 0x2B, 0xDC, 0x63, 0xE5, 0x93, 0x5F, 0x70, 0xD7,

 0xC6, 0xEC, 0x7C, 0x59, 0xF1, 0xB0, 0x4E, 0x2E,

 0x0B, 0x6E, 0x3B, 0xEB, 0x1E, 0xB1, 0x86, 0xA3,

 0x82, 0xD9, 0x7B, 0x3A, 0x80, 0xDA, 0xD3, 0x37,

 0x64, 0x6B, 0xC4, 0x6F, 0x2D, 0x10, 0x98, 0x92,

 0x29, 0x4C, 0xB3, 0xDB, 0xE7, 0x46, 0x6C, 0x7E,

 0xBB, 0xF7, 0xA2, 0x8B, 0xD2, 0x13, 0x1A, 0x58,

 0x89, 0x6D, 0x26, 0xF8, 0xC1, 0xE6, 0x55, 0x7F,

 0xC3, 0x17, 0x5C, 0x2C, 0x5A, 0xAE, 0x0C, 0xFA,

 0xE8, 0x22, 0x0A, 0x77, 0x99, 0x8C, 0xA0, 0x90,

 0x2A, 0x08, 0xBC, 0xED, 0x9E, 0x65, 0xDF, 0x53,

 0x4D, 0x5D, 0x16, 0x04, 0x7A, 0xBF, 0x48, 0x12,

 0x61, 0x43, 0xDD, 0xD4, 0xD1, 0x1C, 0x9D, 0x9F,

 0xC5, 0xB9, 0x75, 0xD8, 0x05, 0x72, 0xAC, 0xAF,

 0xF0, 0x27, 0x28, 0xA8, 0x1F, 0x57, 0x01, 0xD6,

 0xFB, 0x42, 0xDE, 0xCD, 0x41, 0x0E, 0x4A, 0xD5,

 0xF3, 0xBA, 0xB2, 0xCA, 0xB7, 0x8D, 0xFC, 0x50,

 0x5E, 0x03, 0xCC, 0x54, 0x02, 0xA9, 0x34, 0x81,

 0x67, 0x66, 0xCE, 0xEA, 0x69, 0x20, 0x30, 0xCF,

 0x2F, 0x23, 0x76, 0x8E, 0xE0, 0x06, 0x15, 0x47,

 0x74, 0x1D, 0x35, 0x24, 0xA5, 0x3F, 0xFE, 0x39,

 0xC8, 0xE1, 0x44, 0x3C, 0xB6, 0x0D, 0xCB, 0x4F,

 0x11, 0x07, 0x14, 0x8A, 0x96, 0xBD, 0x0F, 0x9B,

};

const static guint spa_lookup_d[] = {

 0x90, 0x1A, 0xA3, 0x4F, 0x40, 0xA8, 0x1C, 0x9F,

 0xC8, 0xB1, 0x9E, 0xE3, 0x60, 0x85, 0x19, 0xE2,

 0xFD, 0xD7, 0x0A, 0xC9, 0xD3, 0x86, 0x00, 0x78,

 0x06, 0x12, 0x8F, 0xBA, 0x2E, 0x53, 0x1D, 0x07,

 0x2D, 0x16, 0xF5, 0xF2, 0xD1, 0xE0, 0xF8, 0x4C,

 0x26, 0x57, 0xB9, 0xD8, 0xC3, 0x3D, 0x7A, 0xB5,

 0xDB, 0x24, 0x0F, 0x63, 0x2C, 0xC0, 0x82, 0x51,

 0x37, 0x99, 0xA9, 0x65, 0x47, 0xAB, 0xDA, 0x39,

 0xE5, 0xA5, 0x58, 0x98, 0x4B, 0x9B, 0xBD, 0xAC,

 0xEB, 0x5F, 0x3B, 0x03, 0x9A, 0xE6, 0x28, 0x43,

 0xD9, 0xCC, 0xFA, 0xA0, 0x30, 0xB2, 0xB6, 0xA4,

 0x84, 0x80, 0x72, 0xD6, 0xAE, 0x3A, 0xA7, 0x33,

 0x0C, 0x05, 0xEF, 0xE9, 0x89, 0xA1, 0x79, 0x18,

 0x62, 0x96, 0x6F, 0x50, 0xCE, 0x92, 0x7C, 0x2B,

 0x5D, 0x8A, 0xF1, 0xFC, 0x97, 0xF7, 0x02, 0xAF,

 0xFE, 0x54, 0x46, 0x93, 0x3F, 0xB0, 0x81, 0x68,

 0x5B, 0x11, 0xC7, 0x1B, 0xBC, 0x8C, 0xC4, 0x5C,

 0x8B, 0x34, 0xB7, 0x2A, 0x91, 0x7F, 0x41, 0x9D,

 0xCF, 0x31, 0x7D, 0x67, 0xE1, 0x76, 0xE4, 0x22,

 0xC2, 0x61, 0x6C, 0xA2, 0x95, 0xEA, 0x1F, 0x14,

 0x3E, 0x32, 0x7E, 0xDE, 0x56, 0xB4, 0x52, 0x0E,

 0x1E, 0x59, 0x29, 0x6A, 0x73, 0x9C, 0xDC, 0x69,

 0xBF, 0x7B, 0x0D, 0x8E, 0x13, 0xFF, 0xDF, 0xC6,

 0x23, 0x6B, 0xED, 0xD4, 0xF0, 0xF6, 0x64, 0x20,

 0x38, 0xFB, 0x44, 0x09, 0x66, 0xCB, 0xDD, 0x74,

 0x71, 0x5A, 0x10, 0xB8, 0x4A, 0x83, 0x75, 0xAD,

 0x45, 0x77, 0x01, 0x4E, 0xB3, 0x8D, 0x6D, 0x21,

 0x70, 0xF4, 0xBE, 0xC5, 0x88, 0xF9, 0x49, 0xE7,

 0x27, 0xEE, 0x48, 0x04, 0x15, 0xD0, 0xD5, 0xEC,

 0x0B, 0xCD, 0x55, 0xCA, 0x87, 0x5E, 0xA6, 0x08,

 0x2F, 0x35, 0x4D, 0x36, 0xE8, 0xBB, 0xAA, 0x17,

 0x42, 0xC1, 0x6E, 0x3C, 0x25, 0xF3, 0xD2, 0x94,

};

void spmaa_init(spmaa_t * state, gconstpointer key)

{

 memset(state, 0, sizeof(spmaa_t));

 // g_debug("initializing spmaa state @%p with key %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx %02hhx",

 // state,

 // ((guint8 *)(key))[0],

 // ((guint8 *)(key))[1],

 // ((guint8 *)(key))[2],

 // ((guint8 *)(key))[3],

 // ((guint8 *)(key))[4],

 // ((guint8 *)(key))[5],

 // ((guint8 *)(key))[6],

 // ((guint8 *)(key))[7]);

 // Setup key.

 spa_setk(&state->internal, key);

 return;

}

void spa_setk(struct spa * state, const guchar * key)

{

 for (guint i = 0; i < 8; i++) {

 state->key[i + 0] = key[spmaa_index_vector[4 * i + 0]];

 state->key[i + 8] = key[spmaa_index_vector[4 * i + 1]];

 state->key[i + 16] = key[spmaa_index_vector[4 * i + 2]];

 state->key[i + 24] = key[spmaa_index_vector[4 * i + 3]];

 }

 return;

}

void spmaa_buffer(spmaa_t *state, gconstpointer data, gushort length)

{

 const guint8 * buffer = data;

 for (guint i = 0; i < length; i++) {

 // Prepare next byte.

 state->internal.cryptbuffer[state->bytesavail] ^= buffer[i];

 if (state->bytesavail++ == 7) {

 // Reset Counter.

 state->bytesavail = 0;

 // Encrypt.

 spa_crypt(&state->internal, 0);

 }

 }

 return;

}

guint32 spmaa_finalise32(spmaa_t * state)

{

 if (state->bytesavail) {

 spa_crypt(&state->internal, 0);

 }

 return state->internal.cryptbuffer[4] << 0

 | state->internal.cryptbuffer[5] << 8

 | state->internal.cryptbuffer[6] << 16

 | state->internal.cryptbuffer[7] << 24;

}

void spa_crypt(struct spa * state, gboolean mode)

{

 guint8 T[8];

 guint32 A, B, C, D, E, F, G, H, I, J, K;

 guint32 i, j;

 // Reset state.

 A = B = C = D = E = F = G = H = I = J = K = 0;

 // Initialize.

 T[3] = state->cryptbuffer[0];

 T[2] = state->cryptbuffer[1];

 T[1] = state->cryptbuffer[2];

 T[0] = state->cryptbuffer[3];

 T[4] = state->cryptbuffer[4];

 T[5] = state->cryptbuffer[5];

 T[6] = state->cryptbuffer[6];

 T[7] = state->cryptbuffer[7];

 for (i = 0; i < 8; i++) {

 // Next byte.

 A = B = C = E = 0;

 j = mode ? (7 - i) : i;

 A = (spa_lookup_a[state->key[j + 8] ^ T[5]] & 0xF0) | (spa_lookup_c[state->key[j + 0] ^ T[4]] & 0x0F);

 B = (spa_lookup_b[state->key[j + 16] ^ T[6]] & 0xF0) | (spa_lookup_a[state->key[j + 8] ^ T[5]] & 0x0F);

 C = (spa_lookup_d[state->key[j + 24] ^ T[7]] & 0xF0) | (spa_lookup_b[state->key[j + 16] ^ T[6]] & 0x0F);

 E = (spa_lookup_c[state->key[j + 0] ^ T[4]] & 0xF0) | (spa_lookup_d[state->key[j + 24] ^ T[7]] & 0x0F);

 D = (spa_lookup_d[state->key[j + 24] ^ T[7]] & 0x0F);

 F = T[4];

 G = T[5];

 H = T[6];

 I = T[7];

 D = T[3];

 J = C ^ D;

 T[4] = J;

 J = T[2];

 K = E ^ J;

 T[5] = K;

 T[6] = T[1] ^ A;

 K = B;

 D = T[0] << 0 | T[1] << 8 | T[2] << 16 | T[3] << 24;

 D = D ^ K;

 T[7] = D;

 T[3] = F;

 T[2] = G;

 T[1] = H;

 T[0] = I;

 }

 state->cryptbuffer[0] = T[4];

 state->cryptbuffer[1] = T[5];

 state->cryptbuffer[2] = T[6];

 state->cryptbuffer[3] = D;

 state->cryptbuffer[4] = F;

 state->cryptbuffer[5] = G;

 state->cryptbuffer[6] = H;

 state->cryptbuffer[7] = I;

}

void spa_cbcdec(spmaa_t *state, gpointer block)

{

 guint8 *ciphertext = block;

 guint i;

 if (ciphertext) {

 for (i = 0; i < 8; i++) {

 state->internal.cryptbuffer[i] = ciphertext[i];

 }

 spa_crypt(&state->internal, 1);

 for (i = 0; i < 8; i++) {

 state->internal.cryptbuffer[i] ^= state->internal.prevblock[i];

 state->internal.prevblock[i] = ciphertext[i];

 ciphertext[i] = state->internal.cryptbuffer[i];

 }

 return;

 }

 // Reset CBC State.

 memset(state->internal.prevblock, 0, sizeof(state->internal.prevblock));

 return;

}

Figure 16. SPMAA implementation in C

	Abstract
	Disclaimer
	Keywords
	I. Introduction
	Version Information

	II. Components
	III. Signature Matching
	Key Findings
	Signature File Format
	Sophtainers
	Parsing IDE Section Data
	Deciphering a signature chunk.
	Bytecode programs.

	Signature Design
	Collision resistance
	Generating pre-images

	Signature Quality
	Summary

	Signature Attacks

	IV. Buffer Overflow Protection
	Key Findings
	Design
	SEH Overwrite Protection
	Exception Handler Chain Verification
	Sophos Implementation
	Summary

	Ret2libc Detection
	Protected Functions
	Ret2libc generality
	Attempting to enumerate known bad
	Improper use of cryptographic primitives
	Popular programs are whitelisted.

	Summary

	Recommendations

	V. SPMAA
	Key Findings
	Design
	Summary

	V. Genes And Genotypes
	Key Findings
	Design
	Examples

	VI. Pre-Execution Analysis
	Key Findings
	Native Code Emulation
	Design

	Javascript Emulation
	Executable Packers
	Executable Packers Supported
	Unpacker Quality
	Unpacker Generality

	Summary

	Archives and Containers
	Summary

	VII. Attack Surface Enumeration
	Antivirus Products

	VIII. Conclusion
	IX. References
	X. Miscellaneous Figures
	XI. Appendix

